CBSE Test Paper 02

CH-13 Limits and Derivatives

1. $\underset{x \rightarrow 0}{L t} \frac{x \log (1+x)}{1-\cos x}$ is equal to
a. 1
b. 2
c. $\frac{1}{2}$
d. 0
2. If $\mathrm{y}=\log \mathrm{x}$, then $y_{n}=$
a. $\frac{(-1)^{n} \cdot n!}{x^{n}}$.
b. $\frac{(-1)^{n} \cdot n!}{x^{n+1}}$
c. $\frac{(-1)^{n-1}(n-1) \text { ! }}{x^{n}}$
d. $\frac{(-1)^{n}(n-1)!}{x^{n}}$
3. $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$ holds true for
a. all real x
b. all $\mathrm{x}[-1,1]$
c. all $x \in(-1,1)$
d. all real x for which $|\mathrm{x}|>1$
4. $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{1-\cos x}{\sqrt{1+x}-1}$ is equal to
a. 0
b. $\sqrt{2}$
c. 1
d. $\frac{1}{2}$
5. If $y=\frac{1-x}{1+x}$ then $y_{6}=$
a. $\frac{6!}{(1+x)^{7}}$
b. $\frac{(-2) \cdot(7!)}{(1+x)^{6}}$
c. $\frac{(-2) \cdot(6!)}{(1+x)^{7}}$
d. $\frac{(2) \cdot(6!)}{(1+x)^{7}}$
6. Fill in the blanks:

The derivative of $5 \sec x+4 \cos x$ is \qquad .
7. Fill in the blanks:

The derivative of $2 x-\frac{3}{4}$ is \qquad -.
8. Find the value of $\lim _{x \rightarrow \sqrt{2}} \frac{x^{4}-4}{x^{2}+3 \sqrt{2} x-8}$.
9. Evaluate $\lim _{x \rightarrow 2} \frac{x^{7}-128}{x-2}$.
10. Find the derivative of the following functions: $\operatorname{cosec} x$
11. Evaluate $\lim _{x \rightarrow a} \frac{(x+2)^{3 / 2}-(a+2)^{3 / 2}}{x-a}$.
12. Find the derivative of $f(x)=1+x+x^{2}+x^{3}+\ldots+x^{50}$ at $x=1$.
13. If $f(x)=\left\{\begin{array}{ll}\frac{x-|x|}{x}, & x \neq 0 \\ 2, & x=0\end{array}\right.$, then show that $\lim _{x \rightarrow 0} \mathrm{f}(\mathrm{x})$ does not exist.
14. Find the derivative of the following functions: $3 \cot x+5 \operatorname{cosec} x$
15. Find the derivative of $(\sin x+\cos x)$ from first principle.

CBSE Test Paper 02

CH-13 Limits and Derivatives

Solution

1. (b) 2

Explanation: $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{x \log (1+x)}{1-\cos x} \cdot \frac{x}{x}$
$\Rightarrow \operatorname{Lt}_{x \rightarrow 0}\left(\frac{\log (1+x)}{x}\right) \cdot\left(\frac{x^{2}}{1-\cos x}\right)$
$\Rightarrow 1 . \frac{1}{\frac{1}{2}}$
$\Rightarrow 2$
2. (c) $\frac{(-1)^{n-1}(n-1)!}{x^{n}}$

Explanation: $y=\log x$
$y^{\prime}=\frac{1}{x}$
$y^{\prime \prime}=-\frac{1}{x^{2}}$
$y^{\prime \prime \prime}=\frac{1.2}{x^{3}}$
$y^{\prime \prime \prime \prime}=-\frac{1.2 .3}{x^{4}}$
$. y^{\prime n}=\frac{(-1)^{n-1}(n-1)!}{x^{n}}$
3. (c) all $\mathrm{x} x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}(-1,1)$

Explanation: Domain of $\sin ^{-1} x=x \in[-1,1]$
domain of $\frac{1}{\sqrt{\left(1-x^{2}\right)}}=x \in(-1,1)$
Intersection of (1) and (2) will give (-1,1)
4. (a) 0

Explanation: Since when we put $\mathrm{x}=0$, we get $0 / 0$ form, So we have to use D'L hospital rule:

Do the differentiation of numerator and denominator partially w.r.t x, we get :

$$
\frac{\sin x}{\frac{1}{2 \sqrt{1+x}}}
$$

By putting $\mathrm{x}=0$ directly, we get 0 .
5. (d) $\frac{(2) .(6!)}{(1+x)^{7}}$

Explanation:

$\mathrm{y}_{1}=\frac{-2}{(1+x)^{2}}$
$\mathrm{y}_{2}=\frac{(-2)(-2)}{(1+x)^{3}}$
$\mathrm{y}_{3}=\frac{(-2)(-2)(-3)}{(1+x)^{4}}$
$\mathrm{y}_{4}=\frac{(-2)(-2)(-3)(-4)}{(1+x)^{5}}$
$\mathrm{Y}_{5}=\frac{(-2)(-2)(-3)(-4)(-5)}{(1+x)^{6}}$
$\mathrm{y}_{6}=\frac{(-2)(-2)(-3)(-4)(-5)(-6)}{(1+x)^{7}}$
6. $5 \sec \mathrm{x} \tan \mathrm{x}-4 \sin \mathrm{x}$
7. 2
8. $\lim _{x \rightarrow \sqrt{2}} \frac{x^{4}-4}{x^{2}+3 \sqrt{2} x-8}=\lim _{x \rightarrow \sqrt{2}} \frac{(x+\sqrt{2})(x-\sqrt{2})\left(x^{2}+2\right)}{(x-\sqrt{2})(x+4 \sqrt{2})}$
$=\lim _{x \rightarrow \sqrt{2}} \frac{(x+\sqrt{2})\left(x^{2}+2\right)}{(x+4 \sqrt{2})}$
$=\frac{(\sqrt{2}+\sqrt{2})(2+2)}{(\sqrt{2}+4 \sqrt{2})}=\frac{8 \sqrt{2}}{5 \sqrt{2}}=\frac{8}{5}$
9. $\lim _{x \rightarrow 2} \frac{x^{7}-128}{x-2}=\lim _{x \rightarrow 2} \frac{x^{7}-2^{7}}{x-2}$
$=7(2)^{7-1}\left[\because \lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}\right]$
$=7 \times 2^{6}$
$=7 \times 64$
$=448$
10. $\operatorname{Here} \mathrm{f}(\mathrm{x})=\operatorname{cosec} \mathrm{x}$
$\therefore \mathrm{f}^{\prime}(x)=\frac{d}{d x}(\operatorname{cosec} x)$
$=-\operatorname{cosec} \mathrm{x} \cot \mathrm{x}$
11. $\lim _{x \rightarrow a} \frac{(x+2)^{3 / 2}-(a+2)^{3 / 2}}{x-a}$
$=\lim _{(x+2) \rightarrow(a+2)} \frac{(x+2)^{3 / 2}-(a+2)^{3 / 2}}{(x+2)-(a+2)}\left[\begin{array}{l}\text { as } x \rightarrow a \\ \therefore x+2 \rightarrow a+2\end{array}\right]$
$=\frac{3}{2}(a+2)^{\frac{3}{2}-1}\left[\because \lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}\right]$
$=\frac{3}{2}(a+2)^{1 / 2}$
12. Given, $\mathrm{f}(\mathrm{a})=1+\mathrm{x}+\mathrm{x}^{2}+\mathrm{x}^{3}+\ldots+\mathrm{x}^{50}$

On differentiating both sides w.r.t. x, we get
$f^{\prime}(x)=0+1+2 x+3 x^{2}+\ldots+50 x^{49}$
At $\mathrm{x}=1$,
$f^{\prime}(1)=1+2(1)+3(1)^{2}+\ldots+50(1)^{49}$
$=1+2+3+\ldots+50$
$=\frac{(50)(51)}{2}=1275\left[\because \sum_{n}=\frac{n(n+1)}{2}\right]$
13. Given, $f(x)=\left\{\begin{array}{cl}\frac{x-|x|}{x}, & \text { if } x \neq 0 \\ 2, & \text { if } x=0\end{array}\right.$

Now, LHL of $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=0$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{x-|x|}{x}=\lim _{h \rightarrow 0^{-}} \frac{(0-h)-|0-h|}{(0-h)}$
[putting $\mathrm{x}=0-\mathrm{h}$ as $\mathrm{x} \rightarrow 0$, then $\mathrm{h} \rightarrow 0$]
$=\lim _{h \rightarrow 0^{-}} \frac{-h-h}{-h}=\lim _{h \rightarrow 0} \frac{-2 h}{-h}=\lim _{h \rightarrow 0} 2=2$
and RHL of $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=0$
$\left.\lim _{x \rightarrow 0^{+}} f(x)\right]=\lim _{x \rightarrow 0^{+}} \frac{x-|x|}{x}=\lim _{h \rightarrow 0^{+}} \frac{(0+h)-|0+h|}{0+h}$
[putting $\mathrm{x}=0+\mathrm{h}$ as $\mathrm{x} \rightarrow 0$, then $\mathrm{b} \rightarrow 0$]
$=\lim _{h \rightarrow 0^{+}} \frac{h-h}{h}=0$
Here, LHL \neq RHL
$\therefore \lim _{x \rightarrow 0} f(x)$ does not exist.
14. Here $\mathrm{f}(\mathrm{x})=3 \cot \mathrm{x}+5 \operatorname{cosec} \mathrm{x}$
$\therefore \mathrm{f}^{\prime}(x)=\frac{d}{d x}[3 \cot x+5 \operatorname{cosec} x]$
$=3 \frac{d}{d x}(\cot x)+5 \frac{d}{d x}(\operatorname{cosec} x)$
$=-3 \operatorname{cosec}^{2} \mathrm{x}-5 \operatorname{cosec} \mathrm{x} \cot \mathrm{x}$
15. We have, $f(x)=\sin x+\cos x$

By using first principle of derivative
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\therefore f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sin (x+h)+\cos (x+h)-\sin x-\cos x}{h}$
$=\lim _{h \rightarrow 0} \frac{[\sin x \cdot \cos h+\cos x \cdot \sin h+\cos x \cdot \cos h-\sin x \cdot \sin h-\sin x-\cos x]}{h}[\because \sin (\mathrm{x}+\mathrm{y})=\sin \mathrm{x} \cos \mathrm{y}$
$+\cos \mathrm{x} \sin \mathrm{y}$ and $\cos (\mathrm{x}+\mathrm{y})=\cos \mathrm{x} \cos \mathrm{y}-\sin \mathrm{x} \sin \mathrm{y}]$
$=\lim _{h \rightarrow 0} \frac{[(\cos x \cdot \sin h-\sin x \cdot \sin h)+(\sin x \cdot \cos h-\sin x)+(\cos x \cdot \cosh -\cos x)]}{h}$
$=\lim _{h \rightarrow 0} \frac{\sin h(\cos x-\sin x)+\sin x(\cos h-1)+\cos x(\cos h-1)}{h}$
$=\lim _{h \rightarrow 0} \frac{\sin h}{h}(\cos x-\sin x)+\lim _{h \rightarrow 0} \frac{\sin x(\cos h-1)}{h}+\lim _{h \rightarrow 0} \frac{\cos x(\cos h-1)}{h}$
$=1 \cdot(\cos x-\sin x)+\lim _{h \rightarrow 0} \sin x\left[\frac{-(1-\cos h)}{h}\right]$
$+\lim _{h \rightarrow 0} \cos x\left[\frac{-(1-\cos h)}{h}\right]\left[\because \lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right]$
$=(\cos x-\sin x)-\sin x \cdot \lim _{h \rightarrow 0}\left(\frac{1-\cos h}{h}\right)-\cos x \cdot \lim _{h \rightarrow 0}\left(\frac{1-\cos h}{h}\right)$
$=(\cos x-\sin x)-\sin x \cdot \lim _{h \rightarrow 0} \frac{2 \sin ^{2} \frac{h}{2}}{h \times \frac{h}{4}} \times \frac{h}{4}-\cos x \cdot \lim _{h \rightarrow 0} \frac{2 \sin ^{2} \frac{h}{2}}{h \times \frac{h}{4}} \times \frac{h}{4}$
$=(\cos x-\sin x)-\sin x \cdot 2 \cdot \frac{1}{4} \lim _{\frac{h}{2} \rightarrow 0}\left(\frac{\sin \frac{h}{2}}{\frac{h}{2}}\right)^{2} \times h-\cos x \cdot 2 \cdot \frac{1}{4} \lim _{\frac{h}{2} \rightarrow 0}\left(\frac{\sin \frac{h}{2}}{\frac{h}{2}}\right)^{2} h$
$=(\cos x-\sin x)-\frac{1}{2} \cdot \sin x \cdot(1) \times 0-\cos x \cdot \frac{1}{2} \cdot(1) \times 0\left[\because \lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right]$
$=(\cos x-\sin x)-0-0$
$=\cos x-\sin x$

