CBSE Test Paper 01

CH-13 Limits and Derivatives

1. If $\mathrm{G}(\mathrm{x})=\sqrt{25-x^{2}}$ then $\underset{x \rightarrow 1}{\operatorname{Lt}} \frac{G(x)-G(1)}{x-1}$ has the value
a. $\frac{1}{24}$
b. $-\sqrt{24}$
c. $\frac{-1}{\sqrt{24}}$
d. $\frac{1}{5}$
2. $L t_{x \rightarrow \frac{\pi}{3}} \frac{\sec x-2}{x-\frac{\pi}{3}}$ is equal to
a. 2
b. $2+\sqrt{3}$
c. $\sqrt{3}$
d. $2 \sqrt{3}$
3. The function, $f(x)=(x-a)^{2} \cos \frac{1}{x-a}$ for $x \neq a$ and $\mathrm{f}(\mathrm{a})=0$, is
a. continuous but not derivable at $\mathrm{x}=0$
b. derivable at $\mathrm{x}=\mathrm{a}$
c. not continuous at $\mathrm{x}=\mathrm{a}$
d. neither continuous nor derivable at $\mathrm{x}=\mathrm{a}$
4. $\underset{x \rightarrow 4}{\operatorname{Lt}} \quad \frac{3-\sqrt{5+x}}{1-\sqrt{5-x}}=$
a. does not exist
b. 0
c. $-\frac{1}{3}$
d. $\frac{1}{3}$
5. $\underset{x \rightarrow 0}{L t} \frac{\sin x^{n}}{(\sin x)^{m}}, n>m>0$, is equal to
a. $\frac{m}{n}$
b. 0
c. 1
d. $\frac{n}{m}$
6. Fill in the blanks:

The value of given limit $\lim _{x \rightarrow 0} \frac{\cos x}{\pi-x}$ is \qquad .
7. Fill in the blanks:

The value of limit $\lim _{r \rightarrow 1} \pi r^{2}$ is \qquad .
8. font-family: Verdana font-size: 8 px Evaluate $\lim _{x \rightarrow 2} \frac{x^{3}-6 x^{2}+11 x-6}{x^{2}-6 x+8}$
9. Find the derivative of x at $\mathrm{x}=1$
10. Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{a}{x^{4}}-\frac{b}{x^{2}}+\cos x$
11. Find the value of $\lim _{x \rightarrow 0} \frac{e^{3 x}-1}{x}$.
12. Find the derivative of $2 x-\frac{3}{4}$
13. Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{a x+b}{p x^{2}+q x+r}$
14. Suppose $f(x)=\left\{\begin{array}{cc}a+b x, & x<1 \\ 4, & x=1 \\ b-a x, & x>1\end{array}\right.$ and if $\lim _{x \rightarrow 1} \mathrm{f}(\mathrm{x})=\mathrm{f}(1)$, then what are the possible values of a and b ?
15. The differentiation of $\sec x$ with respect to x is $\sec x \tan x$.

CBSE Test Paper 01

CH-13 Limits and Derivatives

Solution

1. (c) $\frac{-1}{\sqrt{24}}$

Explanation: The equation is in the form of 0/0
Using L'Hospital rule we have $\frac{\frac{1}{2 \sqrt{25-x^{2}}} \cdot(-2 x)}{1}$
substituting $\mathrm{x}=1$ we get $\frac{-1}{\sqrt{24}}$
2. (d) $2 \sqrt{3}$

Explanation: Using L'Hospital;

$$
\begin{aligned}
& \operatorname{Lt}_{x \rightarrow \frac{\pi}{3}} \frac{\sec x \tan x}{1} \\
& \Rightarrow 2 \sqrt{3}
\end{aligned}
$$

3. (b) derivable at $x=a$

Explanation: situation $\mathrm{x}-\mathrm{a}=\mathrm{t}$; then the function will become
$\Rightarrow \underset{t \rightarrow 0}{L t} t^{2} \cos \frac{1}{t}$
$\Rightarrow 0$. Finite number $=0$
$f(a)=0$
4. (c) $-\frac{1}{3}$

Explanation: Equation is in the form of 0/0
Using L'Hospital rule we get $\frac{-\frac{1}{2 \sqrt{5+x}}}{\frac{1}{2 \sqrt{5-x}}}$
Substituting $x=4$ we get $\frac{-1}{3}$
5. (b) 0

Explanation: $\operatorname{lit}_{x \rightarrow 0} \frac{\sin x^{n}}{(\sin x)^{m}} \cdot \frac{x^{m+n}}{x^{m+n}}$
$\Rightarrow \underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\sin x^{n}}{x^{n}} \cdot \frac{x^{m}}{(\sin x)^{m}} \cdot \frac{x^{n}}{x^{m}}$

$$
\begin{aligned}
& \Rightarrow 1.1^{m} \cdot x^{n-m} \\
& \Rightarrow 1.0=0
\end{aligned}
$$

6. $\frac{1}{\pi}$
7. π
8. When $\mathrm{x}=2$, the expression $\frac{x^{3}-6 x^{2}+11 x-6}{x^{2}-6 x+8}$ assume the form $\frac{0}{0}$. Therefore, $(\mathrm{x}-2)$ is factor common to numerator and denominator. Factorising the numerator and denominator, we have
font - family : Verdana font - size : 8px $\therefore \lim _{x \rightarrow 2} \frac{x^{3}-6 x^{2}+11 x-6}{x^{2}-6 x+8}$
$=\lim _{x \rightarrow 2} \frac{(x-1)(x-2)(x-3)}{(x-2)(x-4)}$
$=\lim _{x \rightarrow 2} \frac{(x-1)(x-3)}{(x-4)}=\frac{(2-1)(2-3)}{(2-4)}=\frac{1}{2}$
9. Here $\frac{d}{d x}(\mathrm{x})=1$
\therefore Derivative of x at $\mathrm{x}=1$
10. Here $f(x)=\frac{a}{x^{4}}-\frac{b}{x^{2}}+\cos x=a x^{-} 4-b x^{-2}+\cos x$
$\therefore f^{\prime}(x)=\frac{d}{d x}\left[a x^{-4}-b x^{2}+\cos x\right]=a \frac{d}{d x}\left(x^{-4}\right)-b \frac{d}{d x}\left(x^{-2}\right)+\frac{d}{d x}(\cos x)$
$-a x^{-5}+2 b x^{-3}-\sin x=\frac{-4 a}{x^{5}}+\frac{2 b}{x^{3}}-\sin x$
$-4 a x^{-5}+2 b x^{-3}-\sin x=\frac{-4 a}{x^{5}}+\frac{2 b}{x^{3}}-\sin x$
11. We have, $\lim _{x \rightarrow 0} \frac{e^{3 x}-1}{x}=\lim _{x \rightarrow 0} \frac{e^{3 x}-1}{x} \times \frac{3}{3}$ [multiplying numerator and denominator by 3]
$=3 \lim _{x \rightarrow 0} \frac{e^{3 x}-1}{3 x} \ldots$. (i)
Let $\mathrm{h}=3 \mathrm{x}$, as $\mathrm{x} \rightarrow 0$, then $\mathrm{h} \rightarrow 0$
Then, from Eq. (i), we get
$\lim _{x \rightarrow 0} \frac{e^{3 x}-1}{x}=3 \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=3(1)\left[\because \lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1\right]$
$=3$
12. Here $f(x)=2 x-\frac{3}{4}$
$\therefore f^{\prime}(x)=\frac{d}{d x}\left(2 x-\frac{3}{4}\right)$
$=2 \frac{d}{d x}(x)-\frac{d}{d x}\left(\frac{3}{4}\right)$
$=2 \times 1-0=2$
13. $f(x)=\frac{a x+b}{p x^{2}+q x+r}$
$\therefore f^{\prime}(x)=\frac{d}{d x}\left[\frac{a x+b}{p x^{2}+q x+r}\right]$
$=\frac{\left(p x^{2}+q x+r\right) \frac{d}{d x}(a x+b)-(a x+b) \frac{d}{d x}\left(p x^{2}+q x+r\right)}{\left(p x^{2}+q x+r\right)^{2}}$
$=\frac{\left(p x^{2}+q x+r\right)(a)-(a x+b)(2 p x+q)}{\left(p x^{2}+q x+r\right)^{2}}$
$=\frac{a p x^{2}+a q x+a r-2 a p x^{2}-a q x-2 b p x-b q}{\left(p x^{2}+q x+r\right)^{2}}$
$=\frac{-a p x^{2}-2 b p x+a r-b q}{\left(p x^{2}+q x+r\right)^{2}}$
14. We have,
$f(x)=\left\{\begin{array}{cc}a+b x, & x<1 \\ 4, & x=1 \\ b-a x, x>1 & \end{array}\right.$
Now, LHL $=\lim _{x \rightarrow 1^{-}} f(x)$
$=\lim _{x \rightarrow 1^{-}}(a+b x)=\lim _{h \rightarrow 0}[a+b(1-h)]$ [putting $\mathrm{x}=1-\mathrm{h}$ as $\mathrm{x} \rightarrow 1$, then $\mathrm{h} \rightarrow 0$]
$=\mathrm{a}+\mathrm{b}$
RHL $=\lim _{x \rightarrow 1^{+}} f(x)$
$=\lim _{x \rightarrow 1^{+}}(b-a x)=\lim _{h \rightarrow 0}[b-a(1+h)]$ [putting $\mathrm{x}=1+\mathrm{h}$ as $\mathrm{x} \rightarrow 1$, then $\mathrm{h} \rightarrow 0$]
$=\mathrm{b}-\mathrm{a}$
Since, $\lim _{x \rightarrow 1} f(x)=f(1)$
\therefore LHL $=$ RHL $=\mathrm{f}(1)$
$\Rightarrow \mathrm{a}+\mathrm{b}=\mathrm{b}-\mathrm{a}=4[\because \mathrm{f}(1)=4$, given $]$
$\Rightarrow \mathrm{a}+\mathrm{b}=4$..(i) and $\mathrm{b}-\mathrm{a}=4$..(ii)
On solving (i) and (ii), we get
$\mathrm{a}=0, \mathrm{~b}=4$
15. Let $f(x)=\sec x$. Then, $f(x+h)=\sec (x+h)$
$\therefore \frac{d}{d x}(\mathrm{f}(\mathrm{x}))=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\Rightarrow \frac{d}{d x}(\mathrm{f}(\mathrm{x}))=\lim _{h \rightarrow 0} \frac{\sec (x+h)-\sec x}{h}$
$\Rightarrow \frac{d}{d x}(\mathrm{f}(\mathrm{x}))=\lim _{h \rightarrow 0} \frac{\frac{1}{\cos (x+h)}-\frac{1}{\cos x}}{h}$
$\Rightarrow \frac{d}{d x}(\mathrm{f}(\mathrm{x}))=\lim _{h \rightarrow 0} \frac{\cos x-\cos (x+h)}{h \cos x \cos (x+h)}$
$\Rightarrow \frac{d}{d x}(\mathrm{f}(\mathrm{x}))=\lim _{h \rightarrow 0} \frac{2 \sin \left(\frac{x+x+h}{2}\right) \sin \left(\frac{x+h-x}{2}\right)}{h \cos x \cos (x+h)}$
$\left[\because \cos C-\cos D=2 \sin \left(\frac{C+D}{2}\right) \sin \left(\frac{D-C}{2}\right)\right]$
$\Rightarrow \frac{d}{d x}(\mathrm{f}(\mathrm{x}))=\lim _{h \rightarrow 0} \frac{2 \sin \left(\frac{2 x+h}{2}\right) \sin \left(\frac{h}{2}\right)}{h \cos x \cos (x+h)}$
$\Rightarrow \frac{d}{d x}(\mathrm{f}(\mathrm{x}))=\lim _{h \rightarrow 0} \frac{\sin \left(\frac{2 x+h}{2}\right)}{\cos x \cos (x+h)} \times \lim _{h \rightarrow 0} \frac{\sin (h / 2)}{(h / 2)}$
$\Rightarrow \frac{d}{d x}(\mathrm{f}(\mathrm{x}))=\frac{\sin x}{\cos x \cos x} \times 1=\tan \mathrm{x} \sec \mathrm{x} .\left[\because \lim _{h \rightarrow 0} \frac{\sin (h / 2)}{(h / 2)}=1\right]$
Hence, $\frac{d}{d x}(\sec \mathrm{x})=\sec \mathrm{x} \tan \mathrm{x}$.
