CBSE Test Paper 01 CH-13 Limits and Derivatives

1. If G (x) =
$$\sqrt{25 - x^2}$$
 then $\lim_{x \to 1} \frac{G(x) - G(1)}{x - 1}$ has the value
a. $\frac{1}{24}$
b. $-\sqrt{24}$
c. $\frac{-1}{\sqrt{24}}$
d. $\frac{1}{5}$
2. $\frac{Lt}{x \to \frac{4}{3}} \frac{\sec x - 2}{x - \frac{4}{3}}$ is equal to
a. 2
b. $2 + \sqrt{3}$
c. $\sqrt{3}$
d. $2\sqrt{3}$
3. The function, $f(x) = (x - a)^2 \cos \frac{1}{x - a}$ for $x \neq a$ and f (a) = 0, is
a. continuous but not derivable at x = 0
b. derivable at x = a
c. not continuous not derivable at x = a
d. neither continuous not derivable at x=a
4. $\frac{Lt}{x \to 4} \frac{3 - \sqrt{5 + x}}{1 - \sqrt{5 - x}} =$
a. does not exist
b. 0
c. $-\frac{1}{3}$
d. $\frac{1}{3} \frac{\sin x^n}{n}$, $n > m > 0$, is equal to
a. $\frac{m}{n}$
b. 0
c. 1
d. $\frac{m}{n}$
6. Fill in the blanks:
The value of given limit $\lim_{x \to 0} \frac{\cos x}{\pi - x}$ is _____.

7. Fill in the blanks:

The value of limit $\lim_{r o 1} \pi r^2$ is _____.

- 8. font-family: Verdana font-size: 8px Evaluate $\lim_{x \to 2} \frac{x^3 6x^2 + 11x 6}{x^2 6x + 8}$
- 9. Find the derivative of x at x = 1
- 10. Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{a}{x^4} \frac{b}{x^2} + \cos x$
- 11. Find the value of $\lim_{x \to 0} \frac{e^{3x}-1}{x}$.
- 12. Find the derivative of $2x rac{3}{4}$
- 13. Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{ax+b}{nx^2+ax+r}$
- 14. Suppose $f(x) = \begin{cases} a + bx, & x < 1 \\ 4, & x = 1 \\ b ax, & x > 1 \end{cases}$ and if $\lim_{x \to 1} f(x) = f(1)$, then what are the possible values of a and b?
- 15. The differentiation of sec x with respect to x is sec x tan x.

CBSE Test Paper 01 CH-13 Limits and Derivatives

Solution

1. (c)
$$\frac{-1}{\sqrt{24}}$$

Explanation: The equation is in the form of 0/0

Using L'Hospital rule we have $\frac{\frac{1}{2\sqrt{25-x^2}} \cdot (-2x)}{1}$ substituting x = 1 we get $\frac{-1}{\sqrt{24}}$

2. (d) $2\sqrt{3}$

Explanation: Using L'Hospital;

$$Lt_{x
ightarrowrac{\pi}{3}}rac{\sec x \tan x}{1} \ \Rightarrow 2\sqrt{3}$$

3. (b) derivable at x = a

Explanation: situation x - a = t; then the function will become

$$\Rightarrow \underset{t \to 0}{Lt} t^2 \cos \frac{1}{t}$$
$$\Rightarrow 0. \text{ Finite number = 0}$$
$$f(a) = 0$$

4. (c)
$$-\frac{1}{3}$$

5.

Explanation: Equation is in the form of 0/0

Using L'Hospital rule we get
$$\frac{-\frac{1}{2\sqrt{5+x}}}{\frac{1}{2\sqrt{5-x}}}$$
Substituting x = 4 we get $\frac{-1}{3}$ (b) 0
Explanation: $\lim_{x\to 0} \frac{\sin x^n}{(\sin x)^m} \cdot \frac{x^{m+n}}{x^{m+n}}$

$$\Rightarrow Lt rac{\sin x^n}{x^n} \cdot rac{x^m}{(\sin x)^m} \cdot rac{x^n}{x^m}$$

$$\Rightarrow 1.1^m. x^{n-m}$$

 $\Rightarrow 1.0 = 0$

6.
$$\frac{1}{\pi}$$

1

8. When x = 2, the expression $\frac{x^3-6x^2+11x-6}{x^2-6x+8}$ assume the form $\frac{0}{0}$. Therefore, (x-2) is factor common to numerator and denominator. Factorising the numerator and denominator, we have

font - family : Verdana font - size : 8px $\therefore \lim_{x \to 2} rac{x^3 - 6x^2 + 11x - 6}{x^2 - 6x + 8}$

$$= \lim_{x \to 2} \frac{(x-1)(x-2)(x-3)}{(x-2)(x-4)}$$

$$= \lim_{x \to 2} \frac{(x-1)(x-3)}{(x-4)} = \frac{(2-1)(2-3)}{(2-4)} = \frac{1}{2}$$
9. Here $\frac{d}{dx}(x) = 1$
 \therefore Derivative of x at x = 1
10. Here $f(x) = \frac{a}{x^4} - \frac{b}{x^2} + \cos x = ax^{-4} - bx^{-2} + \cos x$
 $\therefore f^{5}(x) = \frac{d}{dx}[ax^{-4} - bx^{2} + \cos x] = a\frac{d}{dx}(x^{-4}) - b\frac{d}{dx}(x^{-2}) + \frac{d}{dx}(\cos x) - ax^{-5} + 2bx^{-3} - \sin x = \frac{-4a}{x^5} + \frac{2b}{x^3} - \sin x$
 $-4ax^{-5} + 2bx^{-3} - \sin x = \frac{-4a}{x^5} + \frac{2b}{x^3} - \sin x$
11. We have, $\lim_{x \to 0} \frac{e^{3x} - 1}{x} = \lim_{x \to 0} \frac{e^{3x} - 1}{x} \times \frac{3}{3}$ [multiplying numerator and denominator by
3]
 $= 3\lim_{x \to 0} \frac{e^{3x} - 1}{3x} \dots$ (i)
Let h = 3x, as $x \to 0$, then h $\to 0$
Then, from Eq. (i), we get
 $\lim_{x \to 0} \frac{e^{3x} - 1}{x} = 3\lim_{h \to 0} \frac{e^{h} - 1}{h} = 3(1) \left[\because \lim_{x \to 0} \frac{e^{x} - 1}{x} = 1\right]$
 $= 3$

12. Here $f(x) = 2x - rac{3}{4}$

$$\therefore f'(x) = \frac{d}{dx} \left(2x - \frac{3}{4} \right)$$

$$= 2 \frac{d}{dx} (x) - \frac{d}{dx} \left(\frac{3}{4} \right)$$

$$= 2 \times 1 - 0 = 2$$

$$13. \quad f(x) = \frac{ax+b}{px^2+qx+r}$$

$$\therefore f'(x) = \frac{d}{dx} \left[\frac{ax+b}{px^2+qx+r} \right]$$

$$= \frac{(px^2+qx+r)\frac{d}{dx}(ax+b) - (ax+b)\frac{d}{dx}(px^2+qx+r)}{(px^2+qx+r)^2}$$

$$= \frac{(px^2+qx+r)(a) - (ax+b)(2px+q)}{(px^2+qx+r)^2}$$

$$= \frac{apx^2+aqx+ar-2apx^2-aqx-2bpx-bq}{(px^2+qx+r)^2}$$

$$= \frac{-apx^2-2bpx+ar-bq}{(px^2+qx+r)^2}$$

14. We have,

$$f(x) = \begin{cases} a + bx, & x < 1 \\ 4, & x = 1 \\ b - ax, x > 1 \end{cases}$$
Now, LHL = $\lim_{x \to 1^{-}} f(x)$

$$= \lim_{x \to 1^{-}} (a + bx) = \lim_{h \to 0} [a + b(1 - h)] [\text{putting } x = 1 - h \text{ as } x \to 1, \text{ then } h \to 0]$$

$$= a + b$$
RHL = $\lim_{x \to 1^{+}} f(x)$

$$= \lim_{x \to 1^{+}} (b - ax) = \lim_{h \to 0} [b - a(1 + h)] [\text{putting } x = 1 + h \text{ as } x \to 1, \text{ then } h \to 0]$$

$$= b - a$$
Since, $\lim_{x \to 1} f(x) = f(1)$

$$\therefore \text{ LHL = RHL = f(1)}$$

$$\Rightarrow a + b = b - a = 4 [\because f(1) = 4, \text{ given}]$$

$$\Rightarrow a + b = 4 ..(i) \text{ and } b - a = 4 ..(ii)$$
On solving (i) and (ii), we get
 $a = 0, b = 4$

15. Let $f(x) = \sec x$. Then, $f(x + h) = \sec (x + h)$

$$\therefore \frac{d}{dx} (f(x)) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow \frac{d}{dx} (f(x)) = \lim_{h \to 0} \frac{\sec(x+h) - \sec x}{h}$$

$$\Rightarrow \frac{d}{dx} (f(x)) = \lim_{h \to 0} \frac{\frac{1}{\cos(x+h)} - \frac{1}{\cos x}}{h}$$

$$\Rightarrow \frac{d}{dx} (f(x)) = \lim_{h \to 0} \frac{\cos x - \cos(x+h)}{h \cos x \cos(x+h)}$$

$$\Rightarrow \frac{d}{dx} (f(x)) = \lim_{h \to 0} \frac{2\sin\left(\frac{x+x+h}{2}\right)\sin\left(\frac{x+h-x}{2}\right)}{h \cos x \cos(x+h)}$$

$$\left[\because \cos C - \cos D = 2\sin\left(\frac{C+D}{2}\right)\sin\left(\frac{D-C}{2}\right)\right]$$

$$\Rightarrow \frac{d}{dx} (f(x)) = \lim_{h \to 0} \frac{2\sin\left(\frac{2x+h}{2}\right)\sin\left(\frac{h}{2}\right)}{h \cos x \cos(x+h)}$$

$$\Rightarrow \frac{d}{dx} (f(x)) = \lim_{h \to 0} \frac{\sin\left(\frac{2x+h}{2}\right)}{h \cos x \cos(x+h)}$$

$$\Rightarrow \frac{d}{dx} (f(x)) = \lim_{h \to 0} \frac{\sin\left(\frac{2x+h}{2}\right)}{\cos x \cos(x+h)} \times \lim_{h \to 0} \frac{\sin(h/2)}{(h/2)}$$

$$\Rightarrow \frac{d}{dx} (f(x)) = \frac{\sin x}{\cos x \cos x} \times 1 = \tan x \sec x. \left[\because \lim_{h \to 0} \frac{\sin(h/2)}{(h/2)} = 1\right]$$
Hence, $\frac{d}{dx}$ (sec x) = sec x tan x.