CBSE Test Paper 02

CH-12 Three Dimensional Geometry

1. The direction cosines of the line joining ($1,-1,1$) , and ($-1,1,1$) are
a. $<2,-2,0>$
b. $\langle 1,-1,1\rangle$
c. $<\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0>$
d. $\langle 1,-1,0\rangle$
2. The line $x=1, y=2$ is
a. parallel to Z - axs
b. lies in a plane parallel to XY - plane
c. parallel to X - axs
d. parallel to Y - axs
3. The angle between a line with direction ratios $2: 2: 1$ and a line joining $(3,1,4)$ to (7, $2,12)$
a. $\cos ^{-1}\left(\frac{2}{3}\right)$
b. $\tan ^{-1}\left(-\frac{2}{3}\right)$
c. none of these
d. $\cos ^{-1}\left(\frac{3}{2}\right)$
4. Perpendicular distance of the point $(3,4,5)$ from the y-axis is,
a. $\sqrt{34}$
b. 4
c. $\sqrt{41}$
d. 5
5. The points $A(0,0,0), B(1, \sqrt{3}, 0), C(2,0,0)$ and $D(1,0, \sqrt{3})$ are the vertices of
a. none of these
b. parallelogram
c. square
d. rhombus
6. Fill in the blanks:

If the mid-points of the sides of a triangle $A B ; B C ; C A$ are $D(1,2,-3), E(3,0,1)$ and $F(-1,1$,
$-4)$, then the centroid of the triangle ABC is \qquad .
7. Fill in the blanks:

If the point P lies on z -axis, then coordinates of P are of the form \qquad .
8. A point is on the x-axis. What are its y-coordinates and z-coordinates?
9. If a parallelopiped is formed by planes drawn through the points $(5,8,10)$ and $(3,6,8)$ parallel to the coordinate planes, then find the length of diagonal of the parallelopiped.
10. The mid-points of the sides of a triangle $A B C$ are given by $(-2,3,5),(4,-1,7)$ and $(6,5,3)$. Find the coordinates of A, B and C.
11. Find the ratio in which the line joining $(2,4,5)$ and $(3,5,4)$ is divided by the $y z$ - plane.
12. Find the ratio in which the line segment joining the points $(4,8,10)$ and $(6,10,-8)$ is divided by the YZ-plane.
13. Show that the points $A(1,2,3), B(-1,-2,-1), C(2,3,2)$ and $D(4,7,6)$ are the vertices of a parallelogram $A B C D$, but it is not a rectangle.
14. Find the equation of the set of points which are equidistance from the points $(1,2,3)$ and (3, 2, -1).
15. Prove that the point $A(1,3,0), B(-5,5,2), C(-9,-1,2)$ and $D(-3,-3,0)$ taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.

CBSE Test Paper 02

CH-12 Three Dimensional Geometry

Solution

1. (c) $<\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0>$

Explanation:

The direction ratio of the line joining ($\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1$) , and ($\mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 2)=<\mathrm{x} 1-\mathrm{x} 2$, $\mathrm{y} 1-\mathrm{y} 2$, z1-z2 >

The direction ratio of the line joining $(1,-1,1)$, and $(-1,1,1)=<1+1,-1-1,1-1\rangle=$ $<2,-2,0>$
The direction cosines of the line $=<$

$$
\begin{aligned}
& \frac{2}{\sqrt{(-2)^{2}+(2)^{2}+(0)^{2}}}, \frac{-2}{\sqrt{(-2)^{2}+(2)^{2}+(0)^{2}}}, \frac{0}{\sqrt{(-2)^{2}+(2)^{2}+(0)^{2}}}>=<\frac{2}{\sqrt{8}}, \frac{-2}{\sqrt{8}}, \frac{0}{\sqrt{8}}>= \\
& <\frac{2}{2 \sqrt{2}}, \frac{-2}{2 \sqrt{2}}, \frac{0}{2 \sqrt{2}}>=<\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0>
\end{aligned}
$$

2. (a) parallel to Z - axs

Explanation: Since z co-ordinate is zero it is parallel to Z axis
(b) lies in a plane parallel to XY - plane
3. (a) $\cos ^{-1}\left(\frac{2}{3}\right)$

Explanation:

The angle between a line with direction ratios $2: 2: 1$ and a line joining $(3,1,4)$ to (7, 2,12)
Direction ratios of the line joining the points $\mathrm{A}(3,1,4), \mathrm{B}(7,2,12)$ is $<\mathrm{x} 2-\mathrm{x} 1, \mathrm{y} 2-\mathrm{y} 1, \mathrm{z} 2-$ z1> = < 7-3 , 2-1 , 12-4> = < $4,1,8>$
Now as the angle between two lines having direction ratios <a1,b1,c1> and <a2,b2,c2> is given by
$\operatorname{Cos}^{-1} \frac{a 1 a 2+b 1 b 2+c 1 c 2}{\sqrt{a 1^{2}+b 1^{2}+c 1^{2}} \sqrt{a 2^{2}+b 2^{2}+c 2^{2}}}$
Using the vuales we have
$\cos ^{-1} \frac{2 \times 4+2 \times 1+1 \times 8}{\sqrt{2^{2}+2^{2}+1^{2}} \sqrt{4^{2}+1^{2}+8^{2}}}=\cos ^{-1} \frac{18}{27}=\cos ^{-1} \frac{2}{3}$
4. (a) $\sqrt{34}$

Explanation:

Distance of (α, β, γ) from y-axis is given by
\therefore Distance (d) of $(3,4,5)$ from y - axis is
$\mathrm{d}=\sqrt{3^{2}+5^{2}}=\sqrt{9+25}=\sqrt{34}$
5. (a) none of these

Explanation:

Direction ratios of AB are $(1-0, \sqrt{3}-0,0-0)$ i.e $(1, \sqrt{3}, 0)$
Direction ratios of BC are $(1-0, \sqrt{3}-0,0-0)$ i.e $(1,-\sqrt{3}, 0)$
Direction ratios of CD are $(-1-0,0-0, \sqrt{3}-0)$ i.e $(-1,0, \sqrt{3})$
Direction ratios of CD are $(-1-0,0-0,-\sqrt{3}-0)$ i.e $(-1,0, \sqrt{3})$
If ABCD is a parallelogram, then

$A B \| C D$ and $A D \| B C$

Now, $\frac{1}{-1} \neq \frac{\sqrt{3}}{0} \neq \frac{0}{\sqrt{3}}\left[\because \frac{\mathbf{a}_{1}}{\mathbf{a}_{2}} \neq \frac{\mathbf{b} 1}{\mathbf{b}_{2}} \neq \frac{\mathbf{c}_{1}}{\mathbf{c}_{2}}\right]$
$\therefore A B$ is not parallel to $C D$
Similarly $\frac{-1}{1} \neq \frac{0}{\sqrt{-3}} \neq \frac{-\sqrt{3}}{0}$
$\Rightarrow \mathrm{AD}$ and BC are not parallel
$\therefore \mathrm{ABCD}$ is not a parallelogram and hence it is not a square or rhombus
6. $(1,1,-2)$
7. $(0,0, z)$
8. We know that coordinates of any point on the x-axis will be $(x, 0,0)$. Thus y coordinate and z-coordinate of the point are zero.
9. Given points are $(5,8,10)$ and $(3,6,8)$.
\therefore Length of diagonal $=\sqrt{(3-5)^{2}+(6-8)^{2}+(8-10)^{2}}$
$\left[\because\right.$ distance $\left.=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}\right]$
$=\sqrt{4+4+4}=2 \sqrt{3}$
10. Given midpoints $\mathrm{D}(-2,3,5)$, $\mathrm{E}(4,-1,7)$ and $\mathrm{F}(6,5,3)$

Assume D is midpoint of $A B, E$ is midpoint of $B C$
F is midpoint of $C A$
$A\left(x_{1}, y_{1}, z_{1}\right) B\left(x_{2}, y_{2}, z_{2}\right) C\left(x_{3}, y_{3}, z_{3}\right)$

From midpoint formula, we get following equations
$x_{1}+x_{2}=-4 ; x_{2}+x_{3}=8 ; x_{3}+x_{1}=12$
$y_{1}+y_{2}=6 ; y_{2}+y_{3}=-2 ; y_{3}+y_{1}=10$
$\mathrm{z}_{1}+\mathrm{z}_{2}=10 ; \mathrm{z}_{2}+\mathrm{z}_{3}=14 ; \mathrm{z}_{3}+\mathrm{z}_{1}=6$
Solving above set of equations we get
$A=(0,9,1)$
$B=(-4,-3,9)$
$\mathrm{C}=(12,1,5)$
11. Given points are $(2,4,5)$ and $(3,5,4)$

In YZ plane, $\mathrm{x}=0$
Assume the point P divides the line joining the given points in the ratio m:n. So, lets equate x-term of point P equal to zero. Therefore,
$0=\frac{3 m+2 n}{m+n}$
$3 \mathrm{~m}=-2 \mathrm{n}$
$\mathrm{m}: \mathrm{n}=-2: 3$
which means YZ plane divides the line in 2:3 ratio externally.
12. Let YZ-plane divides the line segment joining the points $A(4,8,10)$ and $B(6,10,-8)$ at $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ in the ratio $\mathrm{k}: 1$. Then, the coordinates of P are
$\left(\frac{4+6 k}{k+1}, \frac{8+10 k}{k+1}, \frac{10-8 k}{k+1}\right)$
$\left[\begin{array}{l}\because \text { coordinates of internal division, } \\ \left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}, \frac{m_{1} z_{2}+m_{2} z_{1}}{m_{1}+m_{2}}\right)\end{array}\right]$
Since P lies on the YZ-plane, its x-coordinate is zero,
i.e., $\frac{4+6 k}{k+1}=0 \quad \Rightarrow \quad k=-\frac{2}{3}$

Therefore, YZ-plane divides AB externally in the ratio 2:3.
13. To show ABCD is a parallelogram we need to show opposite side are equal

Note that
$A B=\sqrt{(-1-1)^{2}+(-2-2)^{2}+(-1-3)^{2}}=\sqrt{4+16+16}=\sqrt{36}=6$
$B C=\sqrt{(2+1)^{2}+(3+2)^{2}+(2+1)^{2}}=\sqrt{9+25+9}=\sqrt{43}$
$C D=\sqrt{(4-2)^{2}+(7-3)^{2}+(6-2)^{2}}=\sqrt{4+16+16}=\sqrt{36}=6$
$D A=\sqrt{(1-4)^{2}+(2-7)^{2}+(3-6)^{2}}=\sqrt{9+25+9}=\sqrt{4} 3$
Since $A B=C D$ and $B C=A D, A B C D$ is a parallelogram.
Now it is required to prove that ABCD is not a rectangle. For this, we show that diagonals AC and BD are unequal. We have
$A C=\sqrt{(2-1)^{2}+(3-2)^{2}+(2-3)^{2}}=\sqrt{1+1+1}=\sqrt{3}$
$B D=\sqrt{(24+1)^{2}+(7+2)^{2}+(6+1)^{2}}=\sqrt{25+81+49}=\sqrt{155}$
Since $A B \neq B D, A B C D$ is not a rectangle
14. Let a point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be equidistant from the points $\mathrm{A}(1,2,3)$ and $\mathrm{P}(3,2,-1)$.

Then, $P A=\sqrt{(x-1)^{2}+(y-2)^{2}+(z-3)^{2}}$
$\left[\because\right.$ distance $=\sqrt{\left.\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}\right]}$
$=\sqrt{x^{2}-2 x+1+y^{2}-4 y+4+z^{2}-6 z+9}$
and $P B=\sqrt{(x-3)^{2}+(y-2)^{2}+(z+1)^{2}}$
$\left[\because\right.$ distance $\left.=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}\right]$
$=\sqrt{x^{2}-6 x+9+y^{2}-4 y+4+z^{2}+2 z+1}$
$=\sqrt{x^{2}+y^{2}+z^{2}-6 x-4 y+2 z+14}$
According to the question, $\mathrm{PA}=\mathrm{PB}$
$\therefore \sqrt{x^{2}+y^{2}+z^{2}-2 x-4 y-6 z+14}$
$=\sqrt{x^{2}+y^{2}+z^{2}-6 x-4 y+2 z+14}$

On squaring both sides, we get
$x^{2}+y^{2}+z^{2}-2 x-4 y-6 z+14=x^{2}+y^{2}+z^{2}-6 x-4 y+2 z+14$
$\Rightarrow 4 \mathrm{x}-8 \mathrm{z}=0$
$\Rightarrow \mathrm{x}-2 \mathrm{z}=0$ [dividing both sides by 4]
15. Here,
$\mathrm{AB}=\sqrt{(1+5)^{2}+(3-5)^{2}+(0-2)^{2}}$
$=\sqrt{36+4+4}$
$=\sqrt{44}$
$=2 \sqrt{11}$ units
$\mathrm{BC}=\sqrt{(-5+9)^{2}+(5+1)^{2}+(2-2)^{2}}$
$=\sqrt{16+36}$
$=\sqrt{52}$
$=2 \sqrt{13}$ units
$\mathrm{CD}=\sqrt{(-9+3)^{2}+(-1+3)^{2}+(2-0)^{2}}$
$=\sqrt{36+4+4}$
$=2 \sqrt{11}$ units
$\mathrm{DA}=\sqrt{(-3-4)^{2}+(-3-3)^{2}+0}$
$=\sqrt{16+36}$
$=\sqrt{52}$
$=2 \sqrt{13}$ units
$\mathrm{AC}=\sqrt{(1+9)^{2}+(3+1)^{2}+(0-2)^{2}}$
$=\sqrt{150+16+4}$
$=\sqrt{120}$
$=4 \sqrt{5}$ units
$\mathrm{BD}=\sqrt{(-3+5)^{2}+(-3-5)^{2}+(0-2)^{2}}$
$=\sqrt{4+64+4}$
$=\sqrt{72}$
$=6 \sqrt{2}$ units
Since,
$\mathrm{AB}=\mathrm{CD}$ and $\mathrm{BC}=\mathrm{DA}$
$\Rightarrow \mathrm{ABCD}$ is a parallelogram $=\mathrm{BD}$
but, $\mathrm{AC} \neq \mathrm{BD}$
$\Rightarrow \mathrm{ABCD}$ is not a rectangle.

