CBSE Test Paper 02

CH-11 Conic Sections

1. The angle between the tangents drawn from the origin to the circle $=$ $(x-7)^{2}+(y+1)^{2}=25$ is
a. $\frac{\pi}{3}$
b. $\frac{\pi}{2}$
c. $\frac{\pi}{6}$
d. $\frac{\pi}{8}$
2. The number of points on X-axis which are at a distance c units (c <3) from $(2,3)$ is
a. 2
b. 0
c. 1
d. 3
3. The equations $\mathrm{x}=\mathrm{a} \cos \theta, \mathrm{y}=\mathrm{b} \sin \theta, 0 \leq \theta<2 \pi, \mathrm{a} \neq \mathrm{b}$, represent
a. a parabola
b. an ellipse
c. a hyperbola
d. a circle
4. $x=\frac{e^{t}+e^{-t}}{2}, y=\frac{e^{t}-e^{-t}}{2} ; t \in R$ represents
a. a circle
b. an ellipse
c. a parabola
d. a hyperbola
5. Two perpendicular tangents to the circle $x^{2}+y^{2}=r^{2}$ meet at P . The locus of P is
a. $x+y=r$
b. $x^{2}+y^{2}=4 r^{2}$
c. $x^{2}+y^{2}=\frac{r^{2}}{2}$
d. $x^{2}+y^{2}=2 r^{2}$
6. Fill in the blanks:

The equation of the ellipse having foci $(0,1),(0,-1)$ and minor axis of length 1 is
\qquad .
7. Fill in the blanks:

The equation of the parabola whose focus is the point $(2,3)$ and directrix is the line x $4 y+3=0$ is \qquad .
8. Find the equation of the parabola with vertex at $(0,0)$ and focus at $(0,2)$.
9. Find the centre and radius of each of the following circle. $x^{2}+(y+2)^{2}=9$
10. Find the equation of the hyperbola whose directrix is $2 x+y-1$, focus $(1,2)$ and eccentricity $\sqrt{3}$.
11. Find the equation of a circle of radius 5 units, passing through the origin and having its centre on the Y-axis.
12. Find the centre and radius of the circle. $x^{2}+y^{2}+6 x-4 y+4=0$
13. Find the equation of the hyperbola, the length of whose latus rectum is 8 and eccentricity is $\frac{3}{\sqrt{5}}$.
14. Find the equation of the circle passing through the points $(4,1)$ and $(6,5)$ and whose centre is on the line $4 \mathrm{x}+\mathrm{y}=16$.
15. Find the axes, eccentricity, latus-rectum and the coordinates of the foci of the hyperbola $25 x^{2}-36 y^{2}=225$.

CBSE Test Paper 02

CH-11 Conic Sections

Solution

1. (b) $\frac{\pi}{2}$ Explanation: The angle between the Radius and tangent is 90°
2. (b) 0

Explanation: the shortest distance from x-axis to the point is 3 .
3. (b) an ellipse

Explanation: parametric form of ellipse.
4. (d) a hyperbola

Explanation: $x=\frac{e^{t}+e^{-t}}{2}, y=\frac{e^{t}-e^{-t}}{2} ; t \in R$ Squaring both sides of both the equation, we get $\mathrm{x}^{2}=\frac{\left(e^{t}+e^{-} t\right)^{2}}{4}$ and $\mathrm{y}^{2}=\frac{\left(e^{t}-e^{-} t\right)}{4}$ Subtracting one equation from another we get $\mathrm{x}^{2}-\mathrm{y}^{2}=1$ which is nothing but equation of hyperbola
5. (d) $x^{2}+y^{2}=2 r^{2}$ Explanation: locus of P is a circle with centre at origin and radius $\sqrt{2 r^{2}}$. This is known as the director circle of the circle $x^{2}+y^{2}=r^{2}$
6. $\frac{4 x^{2}}{1}+\frac{4 y^{2}}{5}=1$
7. $16 x^{2}+y^{2}+8 x y-74 x-78 y+212=0$
8. Given, the vertex is $(0,0)$ and focus is at $(0,2)$ which lies on Y-axis.

The Y axis is the axis of parabola.
Therefore, equation of parabola is of the form
$x^{2}=4 a y$
$x^{2}=4(2) y$ i.e., $x^{2}=8 y$
9. Given equation of circle is $x^{2}+(y+2)^{2}=9$
$\Rightarrow(\mathrm{x}-0)^{2}+\{\mathrm{y}-(-2)\}^{2}=3^{2}$
On comparing with $(x-h)^{2}+(y-k)^{2}=r^{2}$, we get
$h=0, k=-2$ and $r=3$
Hence, centre of circle $=(0,-2)$ and radius $=3$.
10. Let $S(1,2)$ be the focus and $P(x, y)$ be a point on the hyperbola. Draw $P M$ perpendicular from P on the directrix. Then,

SP = ePM [By definition]
$\Rightarrow \sqrt{(x-1)^{2}+(y-2)^{2}}=\sqrt{3}\left|\frac{2 x+y-1}{\sqrt{2^{2}+1^{2}}}\right|$
$\Rightarrow(\mathrm{x}-1)^{2}+(\mathrm{y}-2)^{2}=\frac{3(2 x+y-1)^{2}}{5}$
$\Rightarrow 5\left[(\mathrm{x}-1)^{2}+(\mathrm{y}-2)^{2}\right]=3(2 \mathrm{x}+\mathrm{y}-1)^{2}$
$\Rightarrow 5 \mathrm{x}^{2}+5 \mathrm{y}^{2}-10 \mathrm{x}-20 \mathrm{y}+25=3\left(4 \mathrm{x}^{2}+\mathrm{y}^{2}+1+4 \mathrm{xy}-4 \mathrm{x}-2 \mathrm{y}\right)$
$\Rightarrow 7 x^{2}-2 y^{2}+12 x y-2 x+14 y-22=0$, which is the required equation of the hyperbola.
11. Radius of circle $=5$. The circle passes through the origin and its centre is on the Y-axis i.e., $(0,5)$ and ($0,-5$). Equations of circle are

$(x-0)^{2}+(y-5)^{2}=5^{2}$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-10 \mathrm{y}+25=25$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-10 \mathrm{y}=0$
and $(\mathrm{x}-0)^{2}+(\mathrm{y}+5)^{2}=5^{2}$
$\Rightarrow x^{2}+y^{2}+10 y+25=25$
$\Rightarrow x^{2}+y^{2}+10 y=0$
12. Given equation of circle is $x^{2}+y^{2}+6 x-4 y+4=0$
$\Rightarrow\left(x^{2}+6 x\right)+\left(y^{2}-4 y\right)=-4$
$\Rightarrow\left(x^{2}+6 x+9-9\right)+\left(y^{2}-4 y+4-4\right)=-4$
$\Rightarrow\left(x^{2}+6 x+9\right)+\left(y^{2}-4 y+4\right)=-4+4+9$
$\Rightarrow(\mathrm{x}+3)^{2}+(\mathrm{y}-2)^{2}=9$
$\Rightarrow\{\mathrm{x}-(-3)\}^{2}+\{\mathrm{y}-2\}^{2}=3^{2}$
On comparing with $(x-h)^{2}+(y-k)^{2}=r^{2}$, we get
$h=-3, k=2$ and $r=3$
Hence, centre of circle $=(-3,2)$ and radius $=3$.
13. Let equation of the hyperbola is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

Now $\frac{2 b^{2}}{a}=8 \Rightarrow b^{2}=4 \mathrm{a}$
But $b^{2}=a^{2}\left(e^{2}-1\right)$
$\therefore a^{2}\left(e^{2}-1\right)=4 a \Rightarrow a\left(e^{2}-1\right)=4 \Rightarrow a\left(\frac{a}{5}-1\right)=4 \Rightarrow \mathrm{a}=5$
$\therefore b^{2}=4 \times 5=20$
Thus equation of required hyperbola is $\frac{x^{2}}{25}-\frac{y^{2}}{20}=1$
14. The equation of the circle is
$(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{k})^{2}=\mathrm{r}^{2}$
Since the circle passes through point $(4,1)$
$\therefore(4-h)^{2}+(1-k)^{2}=r^{2} \Rightarrow 16+h^{2}-8 h+1+k^{2}-2 k=r^{2}$
$\Rightarrow \mathrm{h}^{2}+\mathrm{k}^{2}-8 \mathrm{~h}-2 \mathrm{k}+17=\mathrm{r}^{2} \ldots$. (ii)
Also the circle passes through point $(6,5)$
$\therefore(6-\mathrm{h})^{2}+(5-\mathrm{k})^{2}=\mathrm{r}^{2} \Rightarrow 36+\mathrm{h}^{2}-12 \mathrm{~h}+25+\mathrm{k}^{2}-10 \mathrm{k}=\mathrm{r}^{2}$
$\Rightarrow \mathrm{h}^{2}+\mathrm{k}^{2}-12 \mathrm{~h}-10 \mathrm{k}+61=\mathrm{r}^{2}$
From (ii) and (iii), we have
$h^{2}+\mathrm{k}^{2}-8 \mathrm{~h}-2 \mathrm{k}+17=\mathrm{h}^{2}+\mathrm{k}^{2}-12 \mathrm{~h}-10 \mathrm{k}+61$
$\Rightarrow 4 \mathrm{~h}+8 \mathrm{k}=44 \Rightarrow \mathrm{~h}+2 \mathrm{k}=11$.... (iv)
Since the centre (h, k) of the circle lies on the line $4 \mathrm{x}+\mathrm{y}=16$
$\therefore 4 \mathrm{~h}+\mathrm{k}=16 \ldots$ (v)
Solving (iv) and (v), we have
$\mathrm{h}=3$ and $\mathrm{k}=4$
Putting value of h and k in (ii), we have
$(3)^{2}+(4)^{2}-8 \times 3-2 \times 4+17=r^{2}$
$\mathrm{r}^{2}=10$
Thus equation of required circle is
$(x-3)^{2}+(y-4)^{2}=10 \Rightarrow x^{2}+9-6 x+y^{2}+16-8 y=10$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-6 \mathrm{x}-8 \mathrm{y}+15=0$
15. We have,
$25 x^{2}-36 y^{2}=225$
$\Rightarrow \frac{25 x^{2}}{225}-\frac{36 y^{2}}{225}=1$
$\Rightarrow \frac{x^{2}}{9}-\frac{4 y^{2}}{25}=1$
$\Rightarrow \frac{x^{2}}{9}-\frac{y^{2}}{\frac{25}{4}}=1$
$\Rightarrow \frac{x^{2}}{(3)^{2}}-\frac{y^{2}}{\left(\frac{5}{2}\right)^{2}}=1$
This is of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, where $\mathrm{a}=3$ and $\mathrm{b}=\frac{5}{2}$
The length of the transverse axis $=2 \mathrm{a}$
$=2 \times 3=6$
The length of the conjugate axis is $2 \mathrm{~b}=2 \times \frac{5}{2}=5$
The eccentricity e is given by,
$e=\sqrt{1+\frac{b^{2}}{a^{2}}}$
$=\sqrt{1+\frac{\frac{25}{4}}{9}}$
$=\sqrt{1+\frac{25}{36}}$
$=\sqrt{\frac{61}{36}}$
$=\frac{\sqrt{61}}{6}$
Length of Latusrectum $=\frac{2 b^{2}}{a}=\frac{25}{6}$
and Foci ($\pm \frac{\sqrt{61}}{2}, 0$)

