CBSE Test Paper 01 CH-11 Conic Sections

- 1. The equation of the tangent to the conic $x^2-y^2-8x+2y+11=0$ at (2, 1) is
 - a. 2x + 1 = 0
 - b. x 2 = 0
 - c. x + 2 = 0
 - d. x + y + 1 = 0
- 2. The equation $(x^2+y^2)+5x-7y-2=0$ represents
 - a. a circle
 - b. an empty set
 - c. a degenerate circle
 - d. a pair of straight lines
- 3. Three normals to the parabola $y^2=x$ are drawn through a point (c, 0) then
 - a. none of these
 - b. $c > \frac{1}{2}$
 - c. $c = \frac{1}{2}$
 - d. $c = \frac{1}{4}$
- 4. The graph of the function f(x) = $\frac{1}{x}i.e.$ the curve $y=\frac{1}{x}$ is
 - a. a hyperbola
 - b. a parabola
 - c. an ellipse

d. a circle

5. The ellipse =
$$rac{x^2}{a^2} + rac{y^2}{b^2} = 1, b^2 = a^2$$
 is a

- a. a hyperbola
- b. none of these.
- c. horizontal ellipse
- d. vertical ellipse
- 6. Fill in the blanks:

The equation of the circle having centre at (3, -4) and touching the line 5x + 12y - 12 = 0 is _____.

7. Fill in the blanks:

______ of the hyperbola is the ratio of the distance of any one focus from the centre and the distance of any one vertex from the centre.

- 8. Find the equation of parabola when the vertex is at (0, 0) and focus is at (0, 4).
- 9. What is the condition that the equation, on comparing with general equation of circle, $ax^2 + by^2 + 6x + 3y + hxy + 3 = 0$ is the equation of circle?
- Find the equation of hyperbola having Foci (0, ±13) and the conjugate axis is of length 24.
- 11. Determine whether $x^2 + y^2 + 2x + 10y + 26 = 0$ represent a circle or point.
- 12. Find the equation of ellipse having Major axis on the x-axis and passes through the points (4, 3) and (6, 2)
- 13. Find the equation of ellipse having Length of minor axis 16, foci (0, \pm 6)
- 14. Find the centre and radius of the circle. $x^2 + y^2 8x 10y 12 = 0$
- 15. Find the equation of the hyperbola whose foci are (4, 2) and (8,2) and eccentricity is 2.

CBSE Test Paper 01 CH-11 Conic Sections

Solution

1. (b) x - 2 = 0

Explanation: Differentiating the given equation w.r.t x, we get, $2x - 2y \frac{dy}{dx} - 8 + 2 \frac{dy}{dx} = 0$ $\frac{dy}{dx}(1-y) = x - 4$ Therefore $\frac{dy}{dx} = \frac{x-4}{1-y}$ Therefore $\frac{dy}{dx}_{(2,1)}$ is not defined The equation of the tangent at (x_1, y_1) is $y-y_1 = m(x - x_1)$ Therefore the equation of the tangent is x-2 = 0

2. (a) a circle

Explanation: The general equation of the circle is $x^2+y^2-2gh-2fy+c = 0$. Sice the given equations satisfies the general equation, it represents the equation of the circle.

- 3. (b) $c > \frac{1}{2}$ **Explanation:** The equation of the normal to a parabola $y^2 = 4ax$ is y = mx-2am - am³ Hence the equation of the normal to the given parabola $y^2 = x$ is $mx - \frac{m}{2} - \frac{m^3}{4}$ Since it passes throught (c,0) mc $-\frac{m}{2} - \frac{m^3}{4} = 0$ on solving we get m = 0 or $m^2 = 4$ (c-1/2) If m = 0 then the equation of the normal is y = 0 If $m^2 \ge 0$, then 4(c-1/2) ≥ 0 Hence c-1/2 ≥ 0 or c > 1/2
- 4. (a) a hyperbola

Explanation: it is called rectangular hyperbola.

5. (b) none of these.

Explanation: If $a^2 = b^2$, then the equation becomes $x^2 + y^2 = a^2$ which represents the equation of a circle.

6.
$$(x-3)^2 + (y+4)^2 = \left(\frac{45}{13}\right)^2$$

- 7. Eccentricity
- 8. Since, the vertex is at (0, 0) and focus is at (0, 4) which lies on Y-axis. The Y-axis is the axis of the parabola.
 - .:. Equation of parabola is of the form

$$x^2 = -4ay \Rightarrow x^2 = -4(4)y [\therefore a = 4]$$

 $\Rightarrow x^2 = -16y$

9. Given, equation will represent a circle, if Coefficient of x^2 = Coefficient of y^2

i.e., a = b and coefficient of xy should be zero. i.e., h = 0.

10. Here foci are (0, ±13) which lie on y-axis.

So the equation of hyperbola in standard form is $rac{y^2}{a^2}-rac{x^2}{b^2}=1$

∴
$$(13)^2 = a^2 + (12)^2 \Rightarrow a^2 = 169 - 144 = 25$$

Thus required equation of hyperbola is

$$rac{y^2}{25} - rac{x^2}{\left(12
ight)^2} = 1 \Rightarrow rac{y^2}{25} - rac{x^2}{144} = 1$$

11. We have, $x^2 + y^2 + 2x + 10y + 26 = 0$

On adding 1 and 25 both sides to make perfect squares, we get

$$(x^{2} + 2x + 1) + (y^{2} + 10y + 25) = -26 + 1 + 25$$

$$\Rightarrow (x+1)^2 + (y+5)^2 =$$

$$\Rightarrow$$
 [x - (- 1)]² + [y - (- 5)]² = 0²

Hence, it represents a point circle, because it has zero radius.

12. Since the major axis is along x-axis.

So the equation of ellipse in standard form is $rac{x^2}{a^2}+rac{y^2}{b^2}=1$

Since the ellipse passes through point (4, 3)

$$\therefore \frac{16}{a^2} + \frac{9}{b^2} = 1...$$
 (i)

Also the ellipse passes through point (6, 2)

$$\therefore \frac{36}{a^2} + \frac{4}{b^2} = 1$$
....(ii)

Solving (i) and (ii), we have

$$a^2 = 52$$
 and $b^2 = 13$

Thus equation of required ellipse is

$$rac{x^2}{52} + rac{y^2}{13} = 1$$

13. The foci (0, \pm 6) lie on y-axis.

So the equation of ellipse in standard form is $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$] Now length of minor axis 2b = 16 \Rightarrow b = 8 foci (0, ±c) is (0,± 6) \Rightarrow c = 6 We know that $c^2 = a^2 - b^2$ \therefore (6)² = a² - (8)² \Rightarrow a² = 36 + 64 = 100 Thus equation of required ellipse is $rac{x^2}{64} + rac{y^2}{100} = 1$

14. The given equation of circle is

$$x^{2} + y^{2} - 8x - 10y - 12 = 0$$

∴ $(x^{2} - 8x) + (y^{2} + 10y) = 12$
Completing the square

$$\Rightarrow [x^{2} - 8x + (4)^{2}] + [y^{2} + 10y + (5)^{2}]$$

$$= 12 + (4)^{2} + (5)^{2}$$

$$\Rightarrow (x - 4)^{2} + (y + 5)^{2} = 12 + 16 + 25$$

$$\Rightarrow (x - 4)^{2} + (y + 5)^{2} = 53$$

$$\Rightarrow (x - 4)^{2} + (y + 5)^{2} = (\sqrt{53})^{2}$$
Comparing it with $(x - h)^{2} + (y - k)^{2} = r^{2}$, we have
 $h = 4, k = -5$ and $r = \sqrt{53}$
Thus coordinates of the centre is (4, -5) and radius is $\sqrt{53}$.

15. The centre of the hyperbola is the mid-point of the line joining the two foci. So, the coordinates of the centre are $\left(\frac{4+8}{2}, \frac{2+2}{2}\right)$ i.e., (6, 2). Let 2a and 2b be the length of transverse and conjugate axes and let e be the eccentricity.

Then, the equation of the hyperbola is $\frac{(x-6)^2}{a^2} - \frac{(y-2)^2}{b^2} = 1 \dots (i)$ Now, the distance between two foci = 2ae $\Rightarrow \sqrt{(8-4)^2 + (2-2)^2} = 2ae [:: foci = (4, 2) and (8, 2)]$ $\Rightarrow \sqrt{(4)^2} = 2ae$ $\Rightarrow 2ae = 4$ $\Rightarrow 2 \times a \times 2 = 4 [:: e = 2]$ $\Rightarrow a = \frac{4}{4} = 1$ $\Rightarrow a^2 = 1$ Now, $b^2 = a^2 (e^2 - 1)$

$$\Rightarrow b^{2} = 1 (2^{2} - 1) [:: e = 2]$$
$$\Rightarrow b^{2} = 4 - 1$$
$$\Rightarrow b^{2} = 3$$

Putting $a^2 = 1$ and $b^2 = 3$ in equation (i), we get $\frac{(x-6)^2}{1} - \frac{(y-2)^2}{3} = 1$ $\Rightarrow \frac{3(x-6)^2 - (y-2)^2}{3} = 1$ $\Rightarrow 3 (x-6)^2 - (y-2)^2 = 3$ $\Rightarrow 3[x^2 + 36 - 12x] - [y^2 + 4 - 4y] = 3$ $\Rightarrow 3x^2 + 108 - 36x - y^2 - 4 + 4y = 3$ $\Rightarrow 3x^2 - y^2 - 36x + 4y + 101 = 0$

This is the equation of the required hyperbola.

Vidya Champ