CBSE Test Paper 02

CH-10 Straight Lines

1. If (x, y) are the coordinates of point in the plane , then $\left|\begin{array}{lll}3 & 4 & 2 \\ 5 & 8 & 2 \\ x & y & 2\end{array}\right|=0$ represents
a. a straight line parallel to x axis
b. a straight line
c. a circle
d. none of these
2. A line L passes through the points $(1,1)$ and $(2,0)$ and another line M which is perpendicular to L passes through the point $(1 / 2,0)$. The area of the triangle formed by these lines with y axis is :
a. $25 / 8$
b. $25 / 16$
c. none of these
d. $25 / 4$
3. The line which passes through the point (0,1) and perpendicular to the line $x-2 y+$ $11=0$ is
a. none of these
b. $2 x+y-1=0$
c. $2 x-y+1=0$
d. $2 \mathrm{x}-\mathrm{y}+3=0$
4. The equation $y-y_{1}=m\left(x-x_{1}\right), m \in R$, represents all lines through the point
(x_{1}, y_{1}) except the line
a. parallel to Y axis
b. parallel to the line $\mathrm{x}-\mathrm{y}=0$
c. none of these
d. parallel to X axis
5. Two opposite vertices of a rectangle are (1,3), (5,1). If the equation of a diagonal of this rectangle is $y=2 x+c$, then the value of c is
a. 2
b. -4
c. -9
d. 1
6. Fill in the blanks:

If a line is parallel to y-axis at a distance ' b ' from y-axis then its equation is \qquad .
7. Fill in the blanks:

If a line is at a distance 'a' and parallel to x-axis, then the equation of the line is
\qquad .
8. Find the slope of line, whose inclination is 30°.
9. Find the new coordinates of point ($3,-5$), if the origin is shifted to the point $(-3,-2)$.
10. If two poles standing at the points $A(1,-2)$ and $B(-3,5)$, then find the distance between the poles.
11. Find the equations of the line which have slope $\frac{1}{2}$ and cuts off an intercept
i. -5 on Y-axis and
ii. 4 on X -axis.
12. Find the equation of the line joining the point $(3,5)$ to the point of intersection of the lines $4 \mathrm{x}+\mathrm{y}-1=0$ and $7 \mathrm{x}-3 \mathrm{y}-35=0$.
13. Find the direction in which a straight line must be drawn through the point $(-1,2)$ so that its point of intersection with the line $x+y=4$ may be at a distance of 3 units from this point.
14. Find the area of the triangle formed by the lines $y-x=0, x+y=0$ and $x-k=0$.
15. In the $\triangle \mathrm{ABC}$ with vertices $\mathrm{A}(2,3), \mathrm{B}(4,-1)$ and $\mathrm{C}(1,2)$, find the equation and length of altitude from the vertex A.

CBSE Test Paper 02

CH-10 Straight Lines

Solution

1. (b) a straight line

Explanation:

The given determinant can be written as $2\left|\begin{array}{ccc}3 & 4 & 1 \\ 5 & 8 & 1 \\ x & y & 1\end{array}\right|=0$
On expansion we get

$$
2[3(8-y)-4(5-x)+1(5 y-8 x)]
$$

On simplifying the equation $2(-4 x+2 y+4)=0$ represents a striaght line.
2. (b) $25 / 16$

Explanation:

The equation of the line joining the two points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is

$$
\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}
$$

The given points are (1,1,) and (2,0)
On substituting the values we get
$\frac{y-1}{0-1}=\frac{x-1}{2-1}$
On simplifying we get,
$x+y-2=0$
The line which is perpendicular to this line is $x-y+k=0$
Since it passes through (1/2,0)
(1/2) $-0=\mathrm{k}$

This implies $\mathrm{k}=-1 / 2$

Hence the equation of this line is $x-y-1 / 2=0$

On solving these twolines we get the point of intersection as (5/4,3/4)

The point which line $x+y-2=0$ cuts the Y axis is $(0,2)$ and the point which the line $x-y-$ $1 / 2=0$ cuts the Y axis is $(0,-1 / 2)$

Hend e the area of the triangle $=[1 / 2] \times[5 / 4] \times[5 / 4]=25 / 16$ squnits
3. (b) $2 x+y-1=0$

Explanation: The line which is perpendicular to the given line is $2 x+y+k=0$
Since it passes through $(0,1)$
$2(0)+1+k=0$

This implies $\mathrm{k}=-1$
Hence the equation of the required line is $2 x+y-1=0$
4. (a) parallel to Y axis

Explanation:

The vertical lines which are parallel to Y axis has undefined slopes. Hence the slope of the line ' m ' will be undefined.

Therefore the above equation of the line will represent all lines through (x_{1}, y_{1}) except the line parallel to Y - axis
5. (b) - 4

Explanation: Slope of the line joining the given points $(1,3)$ and $(5,1)$ is $\frac{1-3}{5-1}=-1 / 2$
Hence the line having slope $-1 / 2$ is $y=[-1 / 2] x+c$
If the diagonal is $y=2 x+c$, then $c=-4$
6. $\mathrm{x}= \pm \mathrm{b}$
7. $\mathrm{y}= \pm \mathrm{a}$
8. Let θ be the inclination of a line with X -axis, then its slope $=\tan \theta$
$\theta=30^{\circ}$
\Rightarrow Slope $=\tan 30^{\circ}$
$=\frac{1}{\sqrt{3}}$
9. The coordinates of the new origin are $h=-3$ and $k=-2$ and the original coordinates are given to be $x=3, y=-5$.
Let new coordinates of the point be (X, Y). Then,
$\mathrm{X}=(\mathrm{x}-\mathrm{h})=3-(-3)$
$=6$ and
$Y=y-k=-5-(-2)=-3$
Hence, the coordinates of the point $(3,-5)$ in the new system are $(6,-3)$.
10. Given points are $\mathrm{A}(1,-2)$ and $\mathrm{B}(-3,5)$.

Now, distance between two poles
$=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(-3-1)^{2}+(5+2)^{2}}=\sqrt{(-4)^{2}+(7)^{2}}$
$=\sqrt{16+49}=\sqrt{65}$
11. Given, $m=$ slope of the line $=\frac{1}{2}$
and $\mathrm{c}=$ intercept of the line on Y -axis $=-5$
Hence, required equation of the line is
$y=\frac{1}{2} x-5 \Rightarrow \mathrm{x}-2 \mathrm{y}-10=0$
Also, $\mathrm{d}=$ intercept of the line on X -axis $=4$.
Hence, required equation of the line is,
$y=\frac{1}{2}(x-4) \Rightarrow x-2 y-4=0$
12. Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be the point of intersection of the lines $4 \mathrm{x}+\mathrm{y}-1=0$ and $7 \mathrm{x}-3 \mathrm{y}-35=0$.

Now, $\mathrm{y}=1-4 \mathrm{x}$
Thus, $7 \mathrm{x}-3(1-4 \mathrm{x})-35=0$ [putting the value of y]
$7 \mathrm{x}-3+12 \mathrm{x}-35=0$
19x-38
$\mathrm{x}=2$
$\Rightarrow y=1-4 x-1-8=-7$
\therefore Let P $(2,-7)$ and Q $(3,5)$
The equation of the line $P Q$ is
$\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$\mathrm{y}-\mathrm{y}_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-(-7)=\frac{5-(-7)}{3-2}(x-2)$
$y+7=12(x-2)$
$y-12 x=-31$
$12 \mathrm{x}-\mathrm{y}-31=0$
13. Let the required line makes an angle θ with the positive direction of x-axis. Then equation of line is
$\frac{x-(-1)}{\cos \theta}=\frac{y-2}{\sin \theta}=r \Rightarrow \frac{x+1}{\cos \theta}=\frac{y-2}{\sin \theta}=r$
It is given that $\mathrm{r}=3$
$\therefore \frac{x+1}{\cos \theta}=\frac{y-2}{\sin \theta}=3$
$\therefore \mathrm{x}+1=3 \cos \theta \Rightarrow \mathrm{x}=3 \cos \theta-1$
and $\mathrm{y}-2=3 \sin \theta \Rightarrow \mathrm{y}=3 \sin \theta+2$
Since this point on the line $x+y=4$
$\therefore 3 \cos \theta-1+3 \sin \theta+2=4$
$\therefore 3 \cos \theta+3 \sin \theta=3 \Rightarrow \cos \theta+\sin \theta=1$
Squaring both sides, we have
$\cos ^{2} \theta+\sin ^{2} \theta+2 \sin \theta \cos \theta=1$
$\Rightarrow 1+\sin 2 \theta=1 \Rightarrow \sin 2 \theta=0 \Rightarrow 2 \theta=0 \Rightarrow \theta=0$
Which shows that required line is parallel to x -axis .
14. The equation of lines are
$y-x=0$
$x+y=0$
$x-k=0$
By solving (i) and (ii), we get the coordinates of point C .
\therefore Coordinate of C are $(0,0)$.
By solving (ii) and (iii), we get the coordinates of point A.
\therefore Coordinate of A are (k, -k).
By solving (i) and (iii), we get the coordinates of point B.

\therefore coordinates of B are (k, k)
\therefore Area of $\triangle A B C=\frac{1}{2}\left|\begin{array}{ccc}k & -k & 1 \\ k & k & 1 \\ 0 & 0 & 1\end{array}\right|$
$=\frac{1}{2}\left[\left(k^{2}+k^{2}+(0-0)+(0-0)\right]\right.$
$=\frac{1}{2} \times 2 k^{2}$
$=\mathrm{k}^{2}$ sq. unit
15. Given, vertices of a $\triangle \mathrm{ABC}$ are $\mathrm{A}(2,3), \mathrm{B}(4,-1)$ and $\mathrm{C}(1,2)$

We know that altitude from a vertex of a triangle is perpendicular to the opposite side.
\therefore Line $\mathrm{AD} \perp$ line BC .
Then, the slope of $\mathrm{AD} \times$ Slope of $\mathrm{BC}=-1$
$\Rightarrow \quad m \times \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=-1$
$\Rightarrow \quad m \times \frac{2+1}{1-4}=-1\left[\because \mathrm{x}_{1}=4, \mathrm{y}_{1}=-1, \mathrm{x}_{2}=1, \mathrm{y}_{2}=2\right]$
$\Rightarrow \quad m \times \frac{3}{-3}=-1 \Rightarrow m=1$
Hence, equation of $A D$, by using $y-y_{1}=m\left(x-x_{1}\right)$ is
$y-3=1(x-2)$
$\Rightarrow \mathrm{x}-\mathrm{y}-2+3=0$
$\Rightarrow \mathrm{x}-\mathrm{y}+1=0$

Now, equation of BC by using $y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$
is $y+1=\frac{2+1}{1-4}(x-4)\left[\because \mathrm{x}_{1}=4, \mathrm{y}_{1}=-1, \mathrm{x}_{2}=1, \mathrm{y}_{2}=2\right]$
$\Rightarrow \quad y+1=\frac{3}{-3}(x-4)$
$\Rightarrow \mathrm{y}+1=-\mathrm{x}+4$
$\Rightarrow \mathrm{x}+\mathrm{y}-3=0$
Now, length of $\mathrm{AD}=$ Perpendicular distance from $(2,3)$ to the line BC
$=\left|\frac{2+3-3}{\sqrt{1^{2}+1^{2}}}\right|=\frac{2}{\sqrt{2}}=\sqrt{2}$ unit

