CBSE Test Paper 01

CH-10 Straight Lines

1. The lines $x+2 y-3=0,2 x+y-3=0$ and the line l are concurrent. If the line I passes through the origin, then its equation is
a. $x-y=0$
b. $x+y+0$
c. $x+2 y=0$
d. none of these
2. Projection (the foot of perpendicular) from (x, y) on the x - axis is
a. $(-\mathrm{x}, 0)$
b. $(0, y)$
c. $(\mathrm{x}, 0)$
d. $(0,-y)$
3. The distance of the point (α, β) from X axis is
a. $|\beta|$
b. $|\alpha|$
c. none of these.
d. α
4. A line is drawn through the points $(3,4)$ and $(5,6)$. If the is extended to a point whose ordinate is -1 , then the abscissa of that point is
a. none of these
b. 1
c. 0
d. -2
5. The line which is parallel to X axis and crosses the curve $\mathrm{y}=\sqrt{x}$ at an angle of 45^{0} is:
a. $y=1 / 2$
b. $y=1$
c. none of these
d. $\mathrm{y}=\frac{1}{4}$
6. Fill in the blanks:

If a, b, c are in A.P., then the straight line $a x+b y+c=0$ will always pass through
\qquad
7. Fill in the blanks:

The slope of the line, whose inclination is 150° is \qquad .
8. Prove that the line through the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and parallel to the line $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ is $\mathrm{A}\left(\mathrm{x}-\mathrm{x}_{1}\right)+\mathrm{B}\left(\mathrm{y}-\mathrm{y}_{1}\right)=0$.
9. Prove that the points $A(1,4), B(3,-2)$ and $C(4,-5)$ are collinear.
10. Find the equation of the line, where length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of X - axis is 30°.
11. If a, b, c are variables such that $3 a+2 b+4 c=0$, then show that the family of lines given by $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ pass through a fixed point. Also, find the point.
12. Show that the lines $4 x+y-9=0, x-2 y+3=0,5 x-y-6=0$ make equal intercepts on any line of gradient 2.
13. A line forms a triangle in the first quadrant with the coordinate axes. If the area of the triangle is $54 \sqrt{3}$ sq units and perpendicular drawn from the origin to the line makes an angle 60° with X -axis, then find the equation of the line.
14. Find the equation of the straight lines which passes through the origin and trisect the intercept of line $3 x+4 y=12$ between the axes.
15. A rectangle has two opposite vertices at the points $(1,2)$ and $(5,5)$. If the other vertices lie on the line $x=3$, find the equations of the sides of the rectangle.

CBSE Test Paper 01

CH-10 Straight Lines

Solution

1. (a) $x-y=0$

Explanation: Equation of a line passing through the intersection of two lies is given by $\mathrm{ax}_{1}+\mathrm{by}_{1}+\mathrm{c}_{1}+\mathrm{k}\left(\mathrm{ax}_{2}+\mathrm{by}_{2}+\mathrm{c}_{2}\right)=0$

Hence $x+2 y-3+k(2 x+y-3)=0$
Since it passes through $(0,0)$
$-3-3 k=0$

This implies $\mathrm{k}=-1$
Sustituting for k we get,
$x+2 y-3+(-1)(2 x+y-3)=0$
$-x+y=0$ or $x-y=0$
2. (c) $(x, 0)$

Explanation: Let L be the foot of the perpendicular from the X axis. Therefore its y coocrdinate is zero

Therefore the coordiantes of the point L is ($\mathrm{x}, 0$)
Hence option 1 is the correct answer
3. (a) $|\beta|$

Explanation:

The distance of a point from X axis is its y coordinate.
Hence the distance of the point (α, β) from X axis is $|\beta|$
4. (d) -2

Explanation:

The slope of the given line is $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{6-4}{5-3}=1$
Therefore $\frac{4-(-1)}{3-x}=1$
That is $4+1=3-\mathrm{x}$
Therefore $\mathrm{x}=-2$
5. (a) $y=1 / 2$

Explanation: The equation of the line which is a tangent to the curve $\mathrm{y}=\sqrt{x}$ is
$y=m x+a / m$
Since it makes and angle of $45^{\circ}, \mathrm{m}=1$
$y^{2}=x$ implies $a=1 / 4$
Hence the equation of the tangent is $y=x+$
That is the y intercept is $\sqrt{\frac{1}{4}}=1 / 2$
Hence the equation of the line is $y=1 / 2$
6. $(1,-2)$
7. $-\frac{1}{\sqrt{3}}$
8. Equation of the line parallel to line $A x+B y+C=0$ is $A x+B y+K=0 \ldots$ (i) Since line (i) passes through ($\mathrm{x}_{1}, \mathrm{y}_{1}$)

$$
A x_{1}+B y_{1}+K=0 \ldots(i i)
$$

Subtracting (ii) from (i), we have
$A\left(x-x_{1}\right)+B\left(y-y_{1}\right)=0$
9. Given points are $A(1,4), B(3,-2)$ and $C(4,-5)$

From the condition for collinearity of points A, B and C, we have
The slope of $A B=$ Slope of $B C$.
$\therefore \quad \frac{-2-4}{3-1}=\frac{-5+2}{4-3}\left[\because\right.$ slope $\left.=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right]$
$\Rightarrow \frac{-6}{2}=\frac{-3}{1} \Rightarrow-3=-3$, which is true.
Hence, points A, B and C are collinear.
10. The normal form of the equation of the line is $x \cos \omega+y \sin \omega=p$

Given, $\mathrm{p}=4, \omega=30^{\circ}$. Therefore, the equation of the line is $\mathrm{x} \cos 30^{\circ}+\mathrm{y} \sin 30^{\circ}=4$.
$\Rightarrow x \frac{\sqrt{3}}{2}+y \frac{1}{2}=4 \Rightarrow \sqrt{3} x+\mathrm{y}=8$
11. We have, $3 a+2 b+4 c=0$
$\Rightarrow \quad c=-\frac{3}{4} a-\frac{1}{2} b$
On substituting this value of c in $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$, we get
$a x+b y-\frac{3}{4} a-\frac{1}{2} b=0$
$\Rightarrow \quad a\left(x-\frac{3}{4}\right)+b\left(y-\frac{1}{2}\right)=0$
$\Rightarrow \quad\left(x-\frac{3}{4}\right)+\lambda\left(y-\frac{1}{2}\right)=0$, where $\lambda=\frac{b}{a}$.
This equation is of the form $L_{1}+\lambda L_{2}=0$, which represents a straight line through the intersection of the Line $\mathrm{L}_{1}=0$ and $\mathrm{L}_{2}=0$ i.e., $x-\frac{3}{4}=0$ and $y-\frac{1}{2}=0$.
On solving these two equations, we get the point $\left(\frac{3}{4}, \frac{1}{2}\right)$ which is a fixed point.
12. The equation of any line of gradient 2 is

The equations of given lines are
$4 x+y-9=0 \ldots$ (ii)
$x-2 y+3=0$
$5 \mathrm{x}-\mathrm{y}-6=0$
Solving (i) with (ii), (iii) and (iv) respectively, we obtain the coordinates of P, Q and R as
$\mathrm{P}\left(\frac{3}{2}-\frac{c}{6}, 3+\frac{2 c}{3}\right), \mathrm{Q}\left(1-\frac{2 c}{3}, 2-\frac{c}{3}\right)$ and $\mathrm{R}\left(2+\frac{c}{3}, 4+\frac{5 c}{3}\right)$
Clearly, P is the mid-point of $Q R$. Therefore $P Q=P R$.
Hence, lines (ii), (iii) and (iv) make equal intercepts on any line of gradient 2.
13. Since, OM is the perpendicular line on AB .

Here, $\angle M O B=30^{\circ}, \angle M O A=60^{\circ}$

Let $\mathrm{OM}=\mathrm{p}, \mathrm{OA}=\mathrm{a}, \mathrm{OB}=\mathrm{b}$
In $\triangle O M A$,
$\frac{p}{a}=\cos 60^{\circ}=\frac{1}{2} \Rightarrow a=2 p$
In $\Delta O M B$,
$\frac{p}{b}=\cos 30^{\circ}=\frac{\sqrt{3}}{2} \Rightarrow b=\frac{2 p}{\sqrt{3}}$
\therefore Area of $\triangle O A B=\frac{1}{2} \times a b=54 \sqrt{3}$ [given]
$\Rightarrow \quad \frac{1}{2}(2 p) \times \frac{(2 p)}{\sqrt{3}}=54 \sqrt{3}$
$\Rightarrow \quad 4 p^{2}=54 \sqrt{3} \times 2 \sqrt{3}$
$\Rightarrow \mathrm{p}^{2}=81 \Rightarrow \mathrm{p}=9[\because$ distance is always positive, so we take positive sign]
Using normal form of the equation of line $A B$ is
$\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{p}$
$\therefore \mathrm{x} \cos 60^{\circ}+\mathrm{y} \sin 60^{\circ}=9$
$\Rightarrow \quad x\left(\frac{1}{2}\right)+y\left(\frac{\sqrt{3}}{2}\right)=9$
$\Rightarrow \quad x+\sqrt{3} y-18=0$
14. The given line is $3 \mathrm{x}+4 \mathrm{y}=12 \Rightarrow \frac{x}{4}+\frac{y}{3}=1 \ldots$ (i)

Let the line (i) cuts X and Y -axes at A and B , respectively.
Then, $A=(4,0)$ and $B=(0,3)$.
Let the line AB be trisected at P and Q , then
$\mathrm{AP}: \mathrm{PB}=1: 2$
$\therefore \quad P=\left(\frac{1 \cdot 0+2 \cdot 4}{1+2}, \frac{1 \cdot 3+2 \cdot 0}{1+2}\right)$
$\Rightarrow \quad P=\left(\frac{8}{3}, 1\right)$
and $\mathrm{AQ}: \mathrm{QB}=2: 1$
Also, $Q=\left(\frac{2 \cdot 0+1 \cdot 4}{1+2}, \frac{2 \cdot 3+1 \cdot 0}{2+1}\right)=\left(\frac{4}{3}, 2\right)$

Now, equation of line OP passing through (0,0) and $\left(\frac{8}{3}, 1\right)$ is
$y-0=\frac{1-0}{\frac{8}{3}-0}(x-0) \Rightarrow y=\frac{3}{8} x$
$\Rightarrow 3 \mathrm{x}-8 \mathrm{y}=0$
And equation of the line OQ passing through $(0,0)$ and $\left(\frac{4}{3}, 2\right)$ is
$y-0=\frac{2-0}{\frac{4}{3}-0}(x-0) \Rightarrow 2 \mathrm{y}=3 \mathrm{x} \Rightarrow 3 \mathrm{x}-2 \mathrm{y}=0$
15. Let ABCD be a rectangle whose two opposite vertices are $\mathrm{A}(1,2)$ and $\mathrm{C}(5,5)$.

Let the coordinates of the other two vertices B and D of rectangle ABCD be B ($3, \mathrm{y}_{1}$) and $\mathrm{D}\left(3, \mathrm{y}_{2}\right)$. Since diagonals, AC and BD bisect each other. Therefore, the mid-points of $A C$ and $B D$ are the same.
$\therefore \frac{y_{1}+y_{2}}{2}=\frac{2+5}{2} \Rightarrow \mathrm{y}_{1}+\mathrm{y}_{2}=7 \ldots$ (i)
Since $A B C D$ is a rectangle.

$$
\begin{aligned}
& \therefore \mathrm{AC}=\mathrm{BD} \\
& \Rightarrow \mathrm{AC}^{2}=\mathrm{BD}^{2} \\
& \Rightarrow(1-5)^{2}+(2-5)^{2}=(3-3)^{2}+\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)^{2} \\
& \Rightarrow 16+9=\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)^{2} \\
& \Rightarrow \mathrm{y}_{1}-\mathrm{y}_{2}+ \pm 5 \ldots . . \text { (ii) }
\end{aligned}
$$

Solving (i) and (ii), we get

$$
y_{1}=6 \text { and } y_{2}=1 \text { or, } y_{1}=1 \text { and } y_{2}=6
$$

Thus, the coordinates of B and D are $B(3,1)$ and $D(3,6)$.
The equation of side $A B$ is
$y-2=\frac{1-2}{3-1}(x-1)$ or, $y-2=-\frac{1}{2}(x-1)$ or, $x+2 y-5=0$
The equation of side $B C$ is
$\mathrm{y}-1=\frac{5-1}{5-3}(\mathrm{x}-3)$ or, $\mathrm{y}-1=2(\mathrm{x}-3)$ or, $2 \mathrm{x}-\mathrm{y}-5=0$
The equation of side CD is
$y-5=\frac{6-5}{3-5}(x-5)$ or, $y-5=-\frac{1}{2}(x-5)$ or, $x+2 y-15=0$
The equation of side AD is
$y-2=\frac{6-2}{3-1}(x-1)$ or, $y-2=2(x-1)$ or, $2 x-y=0$

