CBSE Test Paper 01

CH-01 Sets

Section A

1. Let U be the universal containing 700 elements. If A and B are subsets of U such that $\mathrm{n}(\mathrm{A})=200, \mathrm{n}(\mathrm{B})=300$ and $n(A \cap B)=100$ then $n\left(A^{\prime} \cap B^{\prime}\right)=\ldots$.
a. 400
b. 300
c. 500
d. 800
2. If $\mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{4,5,6,7\}, A \cap B=$
a. $\{4\}$
b. $\{1,2,3,4\}$
c. $\{6,7\}$.
d. $\{1,2\}$
3. If $\mathrm{n}(\mathrm{A})=3$ and $\mathrm{n}(\mathrm{B})=6$ and $\mathrm{A} \subseteq \mathrm{B}$, then $n(A \cup B)=$?
a. 9
b. 3
c. 6
d. none of these
4. The number of proper subsets of the set $\{1,2,3\}$ is:
a. 6
b. 7
c. 8
d. 5
5. If A class has 175 students . The following data shows the number of students offering one or more subjects. Mathematics 100 ; Physics 70 ; Chemistry 40 ; Mathematics and Physics 30 ; Mathematics and Chemistry 28 ; Physics and Chemistry 23 ; Mathematics, Physics and Chemistry 18 . How many students have offered Mathematics alone?
a. 35
b. 22 .
c. 48
d. 60
6. Fill in the blanks:

If $A=\{1,3,5,7,9\}$ and $B=\{2,3,5,7,11\}$, then $A \Delta B$ is \qquad
7. Fill in the blanks:

A set, consisting of a single element, is called a \qquad .
8. List all the elements of set $\{x: x$ is a month of a year not having 31 days $\}$.
9. State whether the statement is true or false: $\{a, e, i, o, u)$ and $\{a, b, c, d\}$ are disjoint sets.
10. If $U=\{a, b, c, d, e, f, g, h\}$, find the complement of the set: $D=\{f, g, h, a\}$
11. Let $\mathrm{A}=\{1,2,4,5\} \mathrm{B}=\{2,3,5,6\} \mathrm{C}=\{4,5,6,7\}$. Verify:
$A-(B \cup C)=(A-B) \cap(A-C)$
12. If A is any set, prove that: $A \subseteq \phi \Leftrightarrow A=\phi$
13. In a survey of 60 people, it was found that 25 people read newspaper $\mathrm{H}, 26$ read newspaper T, 26 read newspaper I, 9 read both H and I, 11 read both H and T, 8 read both T and I, 3 read all three newspapers.
Find: the number of people who read at least one of the newspaper.
14. For any two sets A and B prove that: $P(A \cap B)=P(A) \cap P(B)$.
15. If $U=\{a, b, c, d, e, f\}, A=\{a, b, c\}, B=\{c, d, e, f\}, C=\{c, d, e\}$ and $D=\{d, e, f\}$, then tabulate the following sets:
i. $A \cap D$
ii. $\mathrm{A} \cap \mathrm{C}$
iii. $U \cap D$
iv. $A \cup \phi$
v. $(U \cap \phi)^{\prime}$
vi. $(\mathrm{U} \cup \mathrm{A}){ }^{\prime}$

CBSE Test Paper 01

CH-01 Sets

Solution
 Section A

1. (b) 300

Explanation:

Given $\mathrm{n}(\mathrm{A})=200, \mathrm{n}(\mathrm{B})=\backslash 300, n(A \cap B)=100$
$n(A \cup B)=n(A)+n(B)-n(A \cap B)=200+300-100=400$
$n\left(A^{\prime} \cap B^{\prime}\right)=n(A \cup B)^{\prime}+n(U)-n(A \cup B)=700-400=300$
[By De morgans law]
2. (a) $\{4\}$

Explanation: Given $\mathrm{A}=1,2,3,4$ and $\mathrm{B}=4,5,6,7$
$(A \cap B)=\{4\}$
3. (c) 6

Explanation: $A \subseteq B$
$\Rightarrow n(A \cup B)=n(B)=6$
4. (b) 7

Explanation: The no of proper subsets $=2^{n}-1=2^{3}-1=7$
Here $\mathrm{n}=\mathrm{no}$ of elements of given set=3
5. (d) 60

Explanation:
M -mathematics
P - physics
C - chemistry
Venn Diagram

By Venn Diagram we can see that the students who offered mathematics alone are 60.
6. $\{1,2,9,11\}$
7. singleton set
8. A month has either $28,29,30$ or 31 days.

Out of the 12 months in a year, the months that have 31 days are:
January, March, May, July, August, October, December
\therefore Given set has elements \{February, April, June, September, November\}
9. Let $A=\{a, e, i, o, u\}$ and $B=\{a, b, c, d\}$

Now $A \cap B=\{a, e, i, o, u\} \cap\{a, b, c, d\}=\{a\}$
Hence A and B are not disjoint. So the statement is false.
10. $D^{\prime}=U-D=\{a, b, c, d, e, f, g, h\}-\{f, g, h, a\}=\{\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$
11. $A=\{1,2,4,5\}, B=\{2,3,5,6\}, C=\{4,5,6,7\}$
$B \cup C=\{2,3,4,5,6,7\}$
$A-(B \cup C)=\{1\} \ldots .$. (i)
$(\mathrm{A}-\mathrm{B})=\{1,4\}$
$(\mathrm{A}-\mathrm{C})=\{1,2\}$
$(A-B) \cap(A-C)=\{1\}$
From eq ${ }^{\mathrm{n}}$ (i) and eq ${ }^{\mathrm{n}}$ (ii), we get
$A-(B \cup C)=(A-B) \cap(A-C)$
12. The symbol ' \Leftrightarrow ' stands for if and only if (in short if).

In order to show that two sets A and B are equal, we show that $A \subseteq B$ and $B \subseteq A$.
We have $A \subseteq \phi, \because \phi$ is a subset of every set,
$\therefore \quad \phi \subseteq A$
Hence A $=\phi$
To show the backward implication, suppose that $A=\phi$.
\because every set is a subset of itself
$\therefore \quad \phi=A \subseteq \phi$
Hence, proved.
13. Here
$n(U)=a+b+c+d+e+f+g+h=60$
$\mathrm{n}(\mathrm{H})=\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=25$
$\mathrm{n}(\mathrm{T})=\mathrm{b}+\mathrm{c}+\mathrm{f}+\mathrm{g}=26$
$\mathrm{n}(\mathrm{I})=\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{f}=26$ (iv)
$n(H \cap I)=c+d=9 \ldots \ldots .$. (v)
$n(H \cap T)=b+c=11$
$n(T \cap I)=c+f=8$.
$n(H \cap T \cap I)=c=3$.

Putting value of c in (vii),
$3+\mathrm{f}=8 \Rightarrow \mathrm{f}=5$
Putting value of c in (vi),
$3+b=11 \Rightarrow b=8$
Putting values of c in (v),
$3+d=9 \Rightarrow d=6$
Putting value of c, d, f in (iv),
$3+6+e+5=26 \Rightarrow e=26-14=12$
Putting value of b, c, f in (iii),
$8+3+5+\mathrm{g}=26 \Rightarrow \mathrm{~g}=26-16=10$
Putting value of b, c, d in (ii)
$a+8+3+6=25 \Rightarrow a=25-17=8$
Number of people who read at least one of the three newspapers
$=\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{f}+\mathrm{g}$
$=8+8+3+6+12+5+10=52$
14. Let $x \in P(A \cap B)$
$\Rightarrow x \subset(A \cap B)$
$\Rightarrow x \subset A$ and $x \subset B$
$\Rightarrow x \in P(A)$ and $x \in P(B)$
$\Rightarrow x \in P(A) \cap P(B)$
$\Rightarrow x \subset P(A) \cap P(B)$
$\therefore P(A \cap B) \subset P(A) \cap P(B) \ldots$ (i)
Let $x \in P(A) \cap P(B)$
$\Rightarrow x \in P(A)$ and $x \in P(B)$
$\Rightarrow x \subset A$ and $\Rightarrow x \subset B$
$\Rightarrow x \subset A \cap B$
$\Rightarrow x \subset P(A \cap B)$
$\therefore P(A) \cap P(B) \subset P(A \cap B) \ldots$ (ii)
From (i) and (ii), we have
$P(A \cup B)=P(A) \cap P(B)$
15. According to the question, we are given that,
$U=\{a, b, c, d, e, f\}, A=\{a, b, c\}, B=\{c, d, e, f\}, C=\{c, d, e\}$ and $D=\{d, e, f\}$
i. $A \cap D=\{a, b, c\} \cap\{d, e, f\}=\phi$
ii. $A \cap C=\{a, b, c\} \cap\{c, d, e\}=\{c\}$
iii. $U \cap D=\{a, b, c, d, e, f\} \cap\{d, e, f\}=\{d, e, f\}$
iv. $A \cup \phi=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \cup\{ \}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
v. $\mathrm{U} \cap \phi=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}\} \cap\{ \}=\phi$
$(U \cap \phi)^{\prime}$
$=\phi^{\prime}$
$=\mathrm{U}$
vi. $U \cup A=\{a, b, c, d, e, f\} \cup\{a, b, c\}$
$=\{a, b, c, d, e, f\}$
$=\mathrm{U}$
$\therefore(\mathrm{U} \cup \mathrm{A})^{\prime}=\phi$

