CBSE TEST PAPER 01

CLASS XI CHEMISTRY (Organic Chemistry Some Basic Principle and Techniques)

General Instruction:

- All questions are compulsory.
- Marks are given alongwith their questions.
- 1. Write the expanded form of the following condensed formulas into their complete structural formulas.
- (a) CH₃CH₂COCH₂CH₃.
- (b) $CH_3CH=CH(CH_2)_3CH_3$. [2]
- 2. How does hybridization affect the electronegativity? [1]
- 3. Why is sp hybrid orbital more electronegative than sp² or sp³ hybridized orbitals? [2]
- 4. What type of hybridization of each carbon atom in the following compounds?
- (a) CH_3Cl (b) $(CH_3)_2CO$ (c) CH_3CN (d) CH_3CH = CHCN. [4]
- 5. What is the shape of the following molecules:
- (a) $H_2C=0$ (b) CH_3F (c) HC=N. [3]
- 6. How many σ and π bonds are present in each of the following molecules?
- (a) $HC \equiv CC \equiv CCH_3$ (b) $CH_2 = C = CHCH_3$. [2]
- 7. Why are electrons easily available to the attacking reagents in π bonds? [1]
- 8. Write the bond line formula for

$$\begin{array}{c}
OH \\
| & [1]
\end{array}$$

$$N \equiv C - CH - C \equiv N.$$

CBSE TEST PAPER 01

CLASS XI CHEMISTRY (Organic Chemistry Some Basic Principle And Techniques) [ANSWERS]

Ans 1. the expanded form of given compound is represented below:

Ans 2. The greater the s – character of the hybrid orbital's, the grater is the electro negativity.

Hybridization	% of s-charaer
sp^3	25%
sp^2	33.33%
sp	50%

Therefore, carbon having sp hybridisation is more electronegative than other two.

Ans 3. The greater the s – character of the hybrid orbital's, the greater is the electro negativity, because s- orbital having spherical structure. Thus, a carbon atom having an sp hybrid orbital with 50% s – character is more electro negative than that possessing $\rm sp^2$ or $\rm sp^3$ hybridized orbital's.

Hybridization	% of s-charaer
sp^3	25%
sp^2	33.33%
sp	50%

Ans 4.

Compound	Hybridzsataion	Reason
CH ₃ Cl	sp^3	carbon is linked to 4 atoms
		methyl groups linked to another carbon atom, sp ² is due to

(CH ₃) ₂ CO	$ sp^3-sp^2 $	carbonyl carbon
CH ₃ CN	sp ³ , sp	methyl groups linked to another carbon atom, cyanide having $C \equiv N$ bond
CH ₃ CH = CHCN	sp^3 , sp^2 , sp^2 , sp	methyl carbon, double bonded carbons, $C\equiv N$ resp.

(a)
$$sp^3$$
 (b) sp^3-sp^2 (c) sp^3 , sp (d) sp^3 , sp^2 , sp^2 , sp .

Ans 5. (a) $H_2C=0$ is sp^2 hybridized carbon due to carbonyl group having geometry trigonal planar.

- (b) CH_3F is sp^3 hybridized carbon having tetrahedral geometry.
- (c) HC≡N is sp hybridized carbon having linear geometry. Ans 6.

Nature of bond	Number of sigma and pi bond
single bond	one sigma bond
double bond	one sigma+ one pi bond
triple bond	one sigma +two pi bonds

Ans 7. In multiple bond systems, the electron charge cloud of the π – bond is located above and below the plane of bonding atoms. This results in the electrons being easily available to the attacking reagents.

Ans 8.The bond line formula for the given compound is:

$$C \equiv N$$
 $C \equiv N$