
CBSE Test Paper 01 Chapter 9 Some Applications of Trigonometry

- 1. The ______ of an object is the angle formed by the line of sight with the horizontal when the object is above the horizontal level. **(1)**
 - a. angle of projection
 - b. angle of depression
 - c. angle of elevation
 - d. none of these
- 2. From a point on the ground which is 15m away from the foot of a tower, the angle of elevation is found to be 60° . The height of the tower is **(1)**
 - a. $15\sqrt{3}$ m
 - b. $20\sqrt{3}$ m
 - c. $10\sqrt{3}$ m
 - d. 10 m
- 3. From a point P on the level ground, the angle of elevation of the top of a tower is 30° . If the tower is 100m high, the distance between P and the foot of the tower is **(1)**
 - a. $300\sqrt{3}$ m
 - b. $150\sqrt{3}$ m
 - c. $200\sqrt{3}$ m
 - d. $100\sqrt{3}$ m
- 4. An electric pole is $10\sqrt{3}$ m high and its shadow is 10 m in length, then the angle of elevation of the sun is (1)
 - a. 45°
 - b. 15°
 - c. 30°
 - d. 60°
- 5. If the shadow of a boy 'x' metres high is 1.6m and the angle of elevation of the sun is

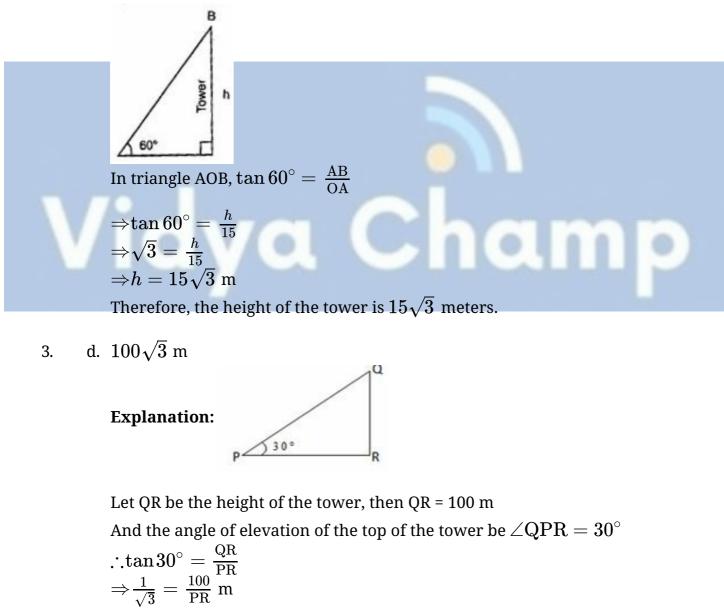
 45° , then the value of 'x' is (1)

- a. 0.8 m
- b. 1.6 m
- c. 3.2 m
- d. 2 m
- 6. The angle of depression of car parked on the road from the top of a 150 m hightower is 30° . Find the distance of the car from the tower. **(1)**

- 9. A ladder 15 m long leans against a wall making an angle of 60^o with the wall. Find the height of the wall from the point the ladder touches the wall. **(1)**
- 10. A pole 6 m high casts a shadow $2\sqrt{3}$ long on the ground, then find the Sun's elevation. (1)
- 11. A boy observes that the angle of elevation of a bird flying at a distance of 100 m is 30°. At the same distance from the boy, a girl finds the angle of elevation of the same bird from a building 20 m high is 45°. Find the distance of the bird from the girl. (1)
- 12. Find the angle of elevation of the sun when the shadow of a pole h m high is $\sqrt{3} h$ m long. (2)

- 13. A 7 m long flagstaff is fixed on the top of a tower standing on the horizontal plane.
 From point on the ground, the angles of elevation of the top and bottom of the flagstaff are 60^o and 45^o respectively. Find the height of the tower correct to one place of decimal. (2)
- 14. The tops of two towers of height x and y, standing on level ground, subtend angles of 30° and 60° respectively at the centre of the line joining their feet, then find x : y. **(3)**
- 15. The length of a string between a kite and a point on the ground is 85 m. If the string makes an angle θ with the ground level such that $\tan \theta = 15/8$ then find the height of the kite from the ground. Assume that there is no slack in the string. (3)
- 16. A man standing on the deck of a ship which is 10 m above the water level observes the angle of elevation of the top of a hill as 60° and the angle of depression of the base of the hill as 30° . Calculate the distance of the hill from the ship and the height of the hill. **(3)**
- 17. The angle of elevation of the top Q of a vertical tower PQ from a point X on the ground is 60° . At a point R, 40 m vertically above X, the angle of elevation of the top Q of tower is 45° . Find the height of the tower PQ and the distance PX. **(3)**
- 18. The angle of depression of the top and bottom of a building 50 metres high as observed from the top of a tower are 30^o and 45^o respectively. Find the height of the tower and also the horizontal distance between the building and the tower. (4)
- 19. A vertically straight tree, 15 m high, is broken by the wind in such a way that its top just touches the ground and makes an angle of 60° with the ground. At what height from the ground did the tree break? (4)
- 20. A round balloon of radius r subtends an angle α at the eye of the observer while the angle of elevation of its centre is β . Prove that the height of the centre of the balloon is r sin β cosec $\frac{\alpha}{2}$. (4)

CBSE Test Paper 01 Chapter 9 Some Applications of Trigonometry

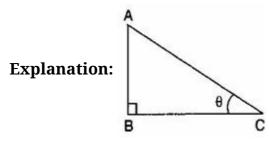

Solution

1. c. angle of elevation

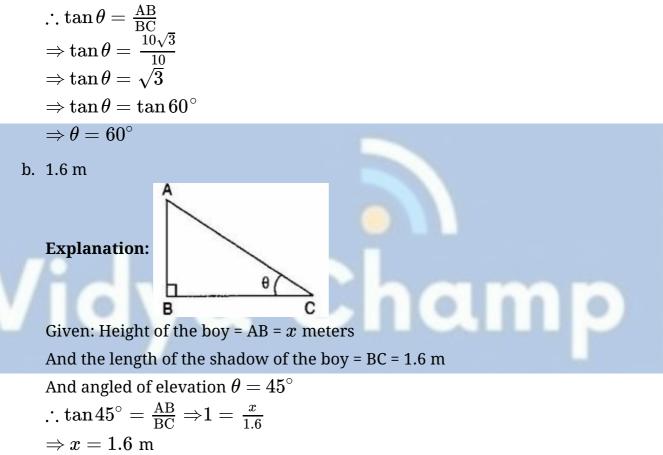
Explanation: The angle of elevation of an object is the angle formed by the line of sight with the horizontal when the object is above the horizontal level.

2. a. $15\sqrt{3}$ m

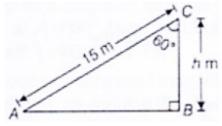
Explanation: Let the height of the tower be h metres.



 \Rightarrow PR = $100\sqrt{3}$ meters

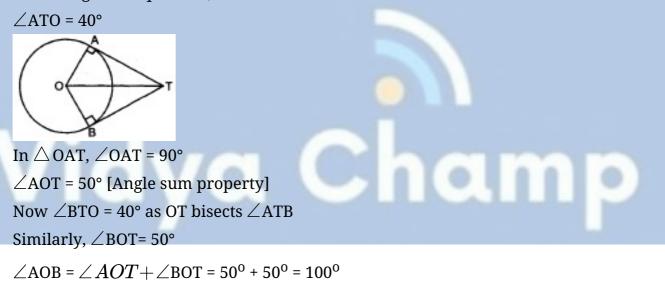

Therefore, the distance between P and the foot of the tower is $100\sqrt{3}$ meters.

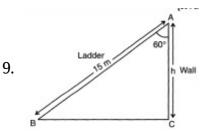
4. d. 60°


5.

Let AB be the electric pole of height $10\sqrt{3}$ m and its shadow be BC of length 10 m. And the angle of elevation of the sun be θ .

6. The angle of depression of car parked on the road from the the top of a 150 m hightower is 30° .

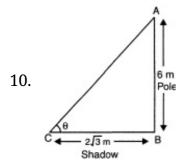



Let AB=~150~m be the height of the tower and angle of depression is $\angle DAC=30^o$.

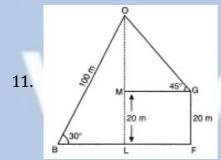
Therefore, $\angle ACB = \angle DAC = 30^{o}$ [∵alternate angles] Now, in right-angled $\triangle ABC$, $\angle B = 90^{o}$ $\tan 30^{o} = \frac{P}{B} = \frac{AB}{BC}$ $\Rightarrow \frac{1}{\sqrt{3}} = \frac{150}{BC}$ [∵ $\tan 30^{o} = \frac{1}{\sqrt{3}}$] $\Rightarrow BC = 150\sqrt{3}$ m

Therefore, Distance of car from tower = $150\sqrt{3}~m$

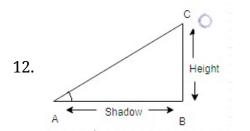
- 7. Given, $cosA = \frac{5}{2}$ = 4 + 4 tan² A = 4(1 + tan² A) = 4 sec² A = $\frac{4}{\cos^2 A} = 4 \times \frac{25}{4} = 25$
- 8. According to the question,



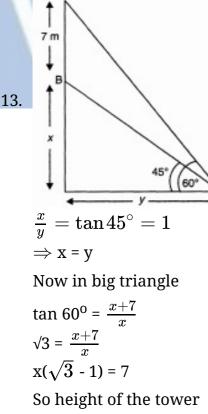
Let ABC be a right angled triangle where AB is is ladder = 15m and angle a = 60° Let AC be the height of the wall

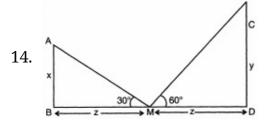

Therefore by Pythagoras theorem

$$egin{aligned} rac{h}{15} &= \cos 60^\circ \ &\Rightarrow & h = 15 imes \cos 60^\circ \ &= 15 imes rac{1}{2} \end{aligned}$$


Let the Sun's elevation be θ Length of pole = 6 m, length of shadow = $2\sqrt{3}$ m From $\triangle ABC$, $\frac{AB}{BC} = \tan \theta$ (using Pythagoras theorem) $\Rightarrow \quad \frac{6}{2\sqrt{3}} = \tan \theta$ $\Rightarrow \quad \tan \theta = \frac{3}{\sqrt{3}} = \sqrt{3} = \tan 60^{\circ}$ $\Rightarrow \quad \theta = 60^{\circ}$

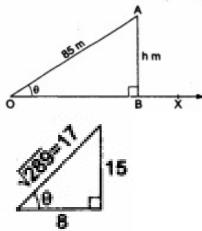
Hence sun's elevation is 60°


Let O be the position of the bird and B be the position of the boy. Let FG be the building and G be the position of the girl.


In
$$\triangle$$
 OLB,
 $\frac{OL}{BO} = \sin 30^{\circ}$
 $\Rightarrow \quad \frac{OL}{100} = \frac{1}{2}$
 \Rightarrow OL = 50 m
OM = OL - ML
= OL - FG
= 50 - 20 = 30 m
In \triangle OMG
 $\frac{OM}{OG} = \sin 45^{\circ} = \frac{1}{\sqrt{2}}$
OG = OM $\sqrt{2}$ = 30 $\sqrt{2}$ = 42.3 meter

Let BC be the height and BA be the shadow of a man. According to the question, AB = BC The shadow of a pole AB = h m high BC = $\sqrt{3} h$ m long. Again, let the angle of elevation of the Sun be θ . In right-angled $\triangle ABC$ $\tan \theta = \frac{P}{B} = \frac{BC}{AB}$ $\Rightarrow \tan \theta = \frac{h}{\sqrt{3h}} \{\because AB = h \text{ m and BC} = \sqrt{3} h\}$ $\Rightarrow \tan \theta = \frac{1}{\sqrt{3}}$ $\Rightarrow \tan \theta = \tan 30^{\circ} (\because \tan 30^{\circ} = \frac{1}{\sqrt{3}})$ $\Rightarrow \theta = 30^{\circ}$

Therefore, Angle of elevation of Sun is 30^o

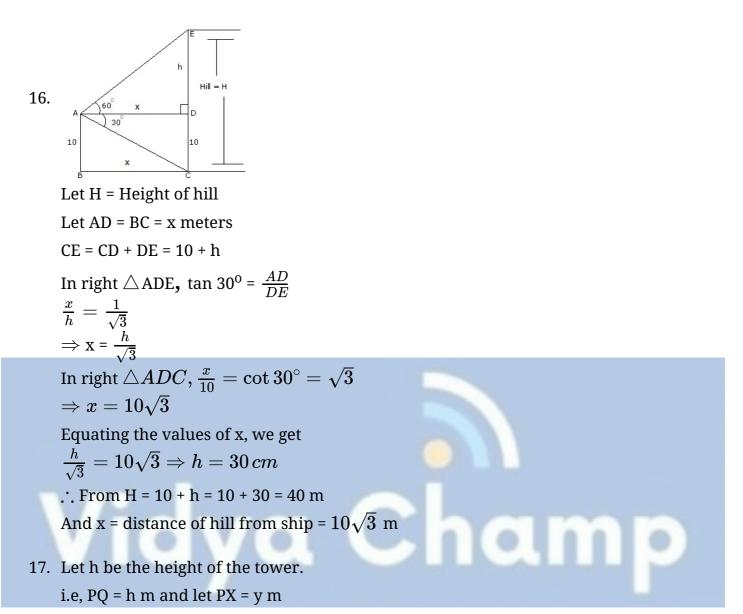

Let M be the centre of the line joining their feet.

Let BM = MD = z

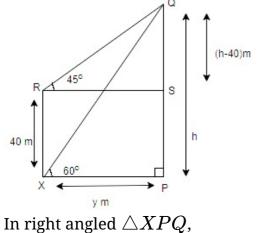
$$\therefore \tan \theta = \frac{\text{perpendicular}}{\text{base}}$$

In $\triangle ABM$, $\therefore \frac{x}{z} = \tan 30^{\circ}$
 $\Rightarrow \quad x = z \times \frac{1}{\sqrt{3}}$(i)
In \triangle MCD we have
 $\frac{y}{z} = tan60^{\circ} = \sqrt{3}$
 $y = z\sqrt{3}$(ii)
From (i) and (ii) we get
 $\frac{x}{y} = \frac{z}{\sqrt{3}} \times \frac{1}{\sqrt{3z}} = \frac{1}{3}$

Hence x : y = 1 : 3


15. Let OX be the horizontal ground and let A be the position of the kite. Let O be the position of the observer and OA be the string. Draw $AB \perp OX$.

Then, $\angle BOA = \theta$ such that $\tan \theta = \frac{15}{8}$, OA = 85m and $\angle OBA = 90^{\circ}$. Let AB = h m.


From right ΔOBA , we have

 $rac{AB}{OA} = \sin heta = rac{15}{17} \left[\because an heta = rac{15}{8} \Rightarrow \sin heta = rac{15}{17}
ight]$ $\Rightarrow rac{h}{85} = rac{15}{17} \Rightarrow h = rac{15}{17} imes 85 = 75.$

Now, draw $RS \parallel XP$,

Then, we have RX =SP = 40 m, $\angle QXP = 60^{o}$ and $\angle QRS = 45^{o}$

 $\tan 60^o = \frac{P}{B} = \frac{PQ}{XP}$

$$\Rightarrow \frac{\sqrt{3}}{1} = \frac{h}{y} [\because \tan 60^{\circ} = \sqrt{3}]$$

$$\Rightarrow y = \frac{h}{\sqrt{3}} ..(i)$$
In right angled $\triangle RSQ$,

$$\tan 45^{\circ} = \frac{P}{B} = \frac{QS}{RS}$$

$$\Rightarrow \tan 45^{\circ} = \frac{PQ-SP}{XP}$$

$$\Rightarrow 1 = \frac{h-40}{y}$$

$$\Rightarrow y = h - 40 ...(ii)$$
Now,solve Eq(i) and Eq(ii), to find h and y.

$$\frac{h}{\sqrt{3}} = h - 40$$

$$(\sqrt{3} \cdot 1) h = 40\sqrt{3}$$

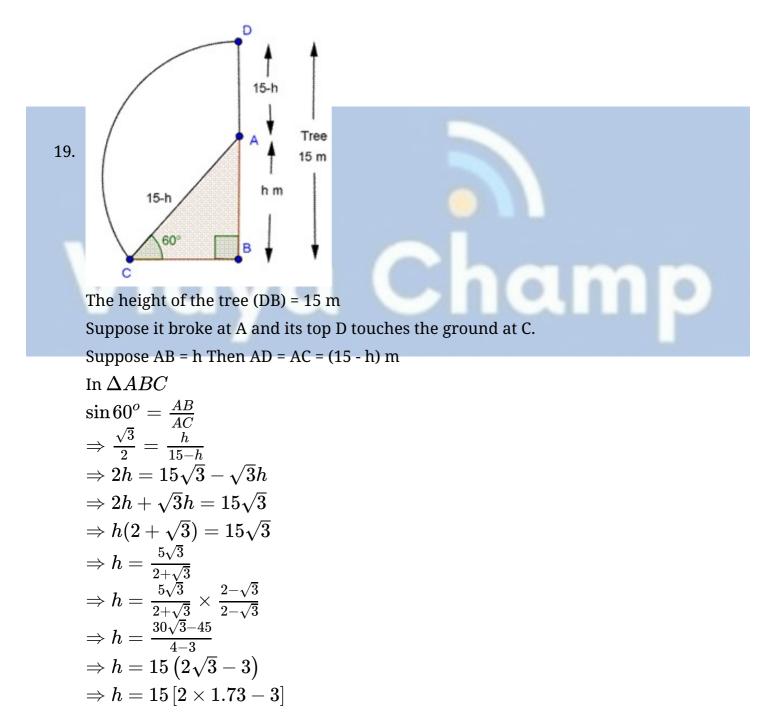
$$h = \frac{40\sqrt{3}}{\sqrt{3} - 1} = \frac{40(1.732)}{1.732 - 1} = \frac{68.28}{0.732} = 94.64$$

$$\Rightarrow y = 94.64 - 40$$

$$\Rightarrow y = 54.64$$

$$\Rightarrow PQ = 94.64 m and PX = 54.64 m$$

 $B = \frac{45^{\circ}}{x} D$ Let the height of the tower be AB = hm Let the building be CD = 50 m and let distance between BD = x Now, In $\triangle ABD$ $\frac{AB}{BD} = \tan 45^{\circ}$ $\Rightarrow \frac{h}{x} = 10$ h = x ..(i)In $\triangle AEC$, $\frac{AE}{EC} = \tan 30^{\circ}$ $\Rightarrow \frac{h-50}{x} = \frac{1}{\sqrt{3}}$


50 m

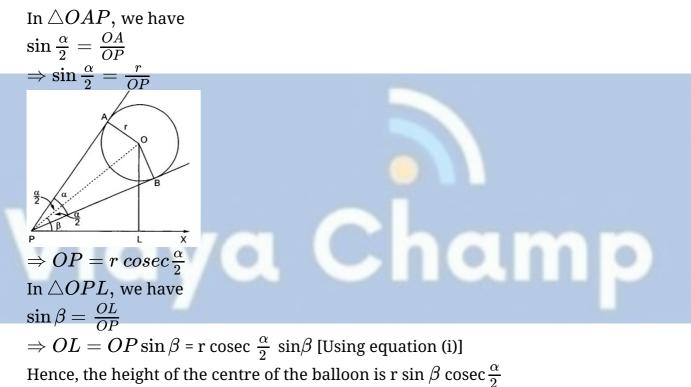
18.

$$\Rightarrow \quad x = h\sqrt{3} - 50\sqrt{3} ..(ii)$$

From (i) and (ii) we get
$$h = \sqrt{3}(h - 50)$$
$$h(\sqrt{3} - 1) = 50$$
$$h = \frac{50}{\sqrt{3} - 1} = \frac{50(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = \frac{50(\sqrt{3} + 1)}{3 - 1} = 25(1.73 + 1)$$
$$= 25 \times 2.73 = 68.25 \text{meter}$$

Hence the height of tower = 68.25 meter

and distance between the building and tower x= h = 68.25 meter


 $egin{array}{lll} \Rightarrow h = 15 \left[3.46 - 3
ight] \ \Rightarrow h = 15 imes 0.46 \ \Rightarrow h = 6.9m \end{array}$

: Height above the ground from where the tree broke is 6.9 meter.

20. Let O be the centre of the balloon of radius r and P the eye of the observer. Let PA, PB be tangents from P to the balloon. Then, $\angle APB = \alpha$.

 $\therefore \angle APO = \angle BPO = \frac{\alpha}{2}$

Let OL be perpendicular from O on the horizontal PX. We are given that the angle of the elevation of the centre of the balloon is β i.e, $\angle OPL = \beta$.

