CBSE Test Paper 01
 Chapter 9 Some Applications of Trigonometry

1. The \qquad of an object is the angle formed by the line of sight with the horizontal when the object is above the horizontal level. (1)
a. angle of projection
b. angle of depression
c. angle of elevation
d. none of these
2. From a point on the ground which is 15 m away from the foot of a tower, the angle of elevation is found to be 60°. The height of the tower is (1)
a. $15 \sqrt{3} \mathrm{~m}$
b. $20 \sqrt{3} \mathrm{~m}$
c. $10 \sqrt{3} \mathrm{~m}$
d. 10 m
3. From a point P on the level ground, the angle of elevation of the top of a tower is 30°. If the tower is 100 m high, the distance between P and the foot of the tower is (1)
a. $300 \sqrt{3} \mathrm{~m}$
b. $150 \sqrt{3} \mathrm{~m}$
c. $200 \sqrt{3} \mathrm{~m}$
d. $100 \sqrt{3} \mathrm{~m}$
4. An electric pole is $10 \sqrt{3} \mathrm{~m}$ high and its shadow is 10 m in length, then the angle of elevation of the sun is (1)
a. 45°
b. 15°
c. 30°
d. 60°
5. If the shadow of a boy ' x ' metres high is 1.6 m and the angle of elevation of the sun is
45°, then the value of ' x ' is (1)
a. 0.8 m
b. 1.6 m
c. 3.2 m
d. 2 m
6. The angle of depression of car parked on the road from the the top of a 150 m hightower is 30°. Find the distance of the car from the tower. (1)
7. If $\cos A=\frac{2}{5}$, find the value of $4+4 \tan ^{2} \mathrm{~A}$. (1)

8. In figure if $\angle \mathrm{ATO}=40^{\circ}$, find $\angle \mathrm{AOB}$. (1)

9. A ladder 15 m long leans against a wall making an angle of 60° with the wall. Find the height of the wall from the point the ladder touches the wall. (1)
10. A pole 6 m high casts a shadow $2 \sqrt{3}$ long on the ground, then find the Sun's elevation. (1)
11. A boy observes that the angle of elevation of a bird flying at a distance of 100 m is 30°. At the same distance from the boy, a girl finds the angle of elevation of the same bird from a building 20 m high is 45°. Find the distance of the bird from the girl. (1)
12. Find the angle of elevation of the sun when the shadow of a pole h m high is $\sqrt{3} h \mathrm{~m}$ long. (2)
13. A 7 m long flagstaff is fixed on the top of a tower standing on the horizontal plane. From point on the ground, the angles of elevation of the top and bottom of the flagstaff are 60° and 45° respectively. Find the height of the tower correct to one place of decimal. (2)
14. The tops of two towers of height x and y, standing on level ground, subtend angles of 30° and 60° respectively at the centre of the line joining their feet, then find $x: y$. (3)
15. The length of a string between a kite and a point on the ground is 85 m . If the string makes an angle θ with the ground level such that $\tan \theta=15 / 8$ then find the height of the kite from the ground. Assume that there is no slack in the string. (3)
16. A man standing on the deck of a ship which is 10 m above the water level observes the angle of elevation of the top of a hill as 60° and the angle of depression of the base of the hill as 30°. Calculate the distance of the hill from the ship and the height of the hill. (3)
17. The angle of elevation of the top Q of a vertical tower $P Q$ from a point X on the ground is 60°. At a point $R, 40 \mathrm{~m}$ vertically above X, the angle of elevation of the top Q of tower is 45°. Find the height of the tower PQ and the distance PX. (3)
18. The angle of depression of the top and bottom of a building 50 metres high as observed from the top of a tower are 30° and 45° respectively. Find the height of the tower and also the horizontal distance between the building and the tower. (4)
19. A vertically straight tree, 15 m high, is broken by the wind in such a way that its top just touches the ground and makes an angle of 60° with the ground. At what height from the ground did the tree break? (4)
20. A round balloon of radius r subtends an angle α at the eye of the observer while the angle of elevation of its centre is β. Prove that the height of the centre of the balloon is $\mathrm{r} \sin \beta \operatorname{cosec} \frac{\alpha}{2}$. (4)

CBSE Test Paper 01
 Chapter 9 Some Applications of Trigonometry

Solution

1. c. angle of elevation

Explanation: The angle of elevation of an object is the angle formed by the line of sight with the horizontal when the object is above the horizontal level.
2.
a. $15 \sqrt{3} \mathrm{~m}$

Explanation: Let the height of the tower be h metres.

In triangle $\mathrm{AOB}, \tan 60^{\circ}=\frac{\mathrm{AB}}{\mathrm{OA}}$
$\Rightarrow \tan 60^{\circ}=\frac{h}{15}$
$\Rightarrow \sqrt{3}=\frac{h}{15}$
$\Rightarrow h=15 \sqrt{3} \mathrm{~m}$
Therefore, the height of the tower is $15 \sqrt{3}$ meters.
3. d. $100 \sqrt{3} \mathrm{~m}$

Explanation:

Let QR be the height of the tower, then $\mathrm{QR}=100 \mathrm{~m}$
And the angle of elevation of the top of the tower be $\angle \mathrm{QPR}=30^{\circ}$
$\therefore \tan 30^{\circ}=\frac{\mathrm{QR}}{\mathrm{PR}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{100}{\mathrm{PR}} \mathrm{m}$
$\Rightarrow \mathrm{PR}=100 \sqrt{3}$ meters
Therefore, the distance between P and the foot of the tower is $100 \sqrt{3}$ meters.
4. d. 60°

Explanation:

Let AB be the electric pole of height $10 \sqrt{3} \mathrm{~m}$ and its shadow be BC of length 10 m . And the angle of elevation of the sun be θ.
$\therefore \tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\Rightarrow \tan \theta=\frac{10 \sqrt{3}}{10}$
$\Rightarrow \tan \theta=\sqrt{3}$
$\Rightarrow \tan \theta=\tan 60^{\circ}$
$\Rightarrow \theta=60^{\circ}$
5. b. 1.6 m

Explanation:

Given: Height of the boy $=\mathrm{AB}=x$ meters
And the length of the shadow of the boy $=\mathrm{BC}=1.6 \mathrm{~m}$
And angled of elevation $\theta=45^{\circ}$
$\therefore \tan 45^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}} \Rightarrow 1=\frac{x}{1.6}$
$\Rightarrow x=1.6 \mathrm{~m}$
6. The angle of depression of car parked on the road from the the top of a 150 m hightower is 30°.

Let $A B=150 m$ be the height of the tower and angle of depression is $\angle D A C=30^{\circ}$.

Therefore, $\angle A C B=\angle D A C=30^{\circ}[\because$ alternate angles $]$
Now, in right-angled $\triangle A B C, \angle B=90^{\circ}$
$\tan 30^{\circ}=\frac{P}{B}=\frac{A B}{B C}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{150}{B C}\left[\because \tan 30^{\circ}=\frac{1}{\sqrt{3}}\right]$
$\Rightarrow B C=150 \sqrt{3} \mathrm{~m}$
Therefore, Distance of car from tower $=150 \sqrt{3} \mathrm{~m}$
7. Given, $\cos A=\frac{5}{2}$
$=4+4 \tan ^{2} A$
$=4\left(1+\tan ^{2} A\right)$
$=4 \sec ^{2} A=\frac{4}{\cos ^{2} A}=4 \times \frac{25}{4}=25$
8. According to the question,

In $\triangle \mathrm{OAT}, \angle \mathrm{OAT}=90^{\circ}$
$\angle \mathrm{AOT}=50^{\circ}$ [Angle sum property]
Now $\angle \mathrm{BTO}=40^{\circ}$ as OT bisects $\angle \mathrm{ATB}$
Similarly, $\angle \mathrm{BOT}=50^{\circ}$

$$
\angle \mathrm{AOB}=\angle A O T+\angle \mathrm{BOT}=50^{\circ}+50^{\circ}=100^{\circ}
$$

9.

Let ABC be a right angled triangle where AB isis ladder $=15 \mathrm{~m}$ and angle $\mathrm{a}=60^{\circ}$
Let AC be the height of the wall
Therefore by Pythagoras theorem
$\frac{h}{15}=\cos 60^{\circ}$
$\Rightarrow \quad h=15 \times \cos 60^{\circ}$
$=15 \times \frac{1}{2}$
$=7.5 \mathrm{~m}$
10.

Let the Sun's elevation be θ
Length of pole $=6 \mathrm{~m}$, length of shadow $=2 \sqrt{3} \mathrm{~m}$
From $\triangle A B C, \quad \frac{A B}{B C}=\tan \theta$ (using Pythagoras theorem)
$\Rightarrow \quad \frac{6}{2 \sqrt{3}}=\tan \theta$
$\Rightarrow \quad \tan \theta=\frac{3}{\sqrt{3}}=\sqrt{3}=\tan 60^{\circ}$
$\Rightarrow \quad \theta=60^{\circ}$
Hence sun's elevation is 60°
11.

Let O be the position of the bird and B be the position of the boy. Let $F G$ be the building and G be the position of the girl.
In \triangle OLB,
$\frac{O L}{B O}=\sin 30^{\circ}$
$\Rightarrow \quad \frac{O L}{100}=\frac{1}{2}$
$\Rightarrow \mathrm{OL}=50 \mathrm{~m}$
$\mathrm{OM}=\mathrm{OL}-\mathrm{ML}$
$=$ OL - FG
$=50-20=30 \mathrm{~m}$
In $\triangle \mathrm{OMG}$
$\frac{O M}{O G}=\sin 45^{\circ}=\frac{1}{\sqrt{2}}$
$\mathrm{OG}=\mathrm{OM} \sqrt{2}=30 \sqrt{2}=42.3$ meter
12.

Let BC be the height and BA be the shadow of a man.
According to the question, $\mathrm{AB}=\mathrm{BC}$
The shadow of a pole $\mathrm{AB}=\mathrm{h} \mathrm{m}$ high $\mathrm{BC}=\sqrt{3} h \mathrm{~m}$ long.
Again, let the angle of elevation of the Sun be θ.
In right-angled $\triangle A B C$
$\tan \theta=\frac{P}{B}=\frac{B C}{A B}$
$\Rightarrow \tan \theta=\frac{h}{\sqrt{3} h}\{\because \mathrm{AB}=\mathrm{h} \mathrm{m}$ and $\mathrm{BC}=\sqrt{3} h\}$
$\Rightarrow \tan \theta=\frac{1}{\sqrt{3}}$
$\Rightarrow \tan \theta=\tan 30^{\circ}\left(\because \tan 30^{\circ}=\frac{1}{\sqrt{3}}\right)$
$\Rightarrow \theta=30^{\circ}$
Therefore, Angle of elevation of Sun is 30°
13.

$\frac{x}{y}=\tan 45^{\circ}=1$
$\Rightarrow \mathrm{x}=\mathrm{y}$
Now in big triangle
$\tan 60^{\circ}=\frac{x+7}{x}$
$\sqrt{ } 3=\frac{x+7}{x}$
$\mathrm{x}(\sqrt{3}-1)=7$
So height of the tower
$x=\frac{\gamma}{1.73-1}=9.58$
14.

Let M be the centre of the line joining their feet.
Let $\mathrm{BM}=\mathrm{MD}=\mathrm{z}$
$\therefore \tan \theta=\frac{\text { perpendicular }}{\text { base }}$
In $\triangle A B M, \therefore \frac{x}{z}=\tan 30^{\circ}$
$\Rightarrow \quad x=z \times \frac{1}{\sqrt{3}}$
In \triangle MCD we have
$\frac{y}{z}=\tan 60^{\circ}=\sqrt{3}$
$y=z \sqrt{3} \ldots \ldots(i i)$
From (i) and (ii) we get
$\frac{x}{y}=\frac{z}{\sqrt{3}} \times \frac{1}{\sqrt{3} z}=\frac{1}{3}$
Hence $x: y=1: 3$
15. Let $O X$ be the horizontal ground and let A be the position of the kite. Let O be the position of the observer and OA be the string. Draw $A B \perp O X$.

Then, $\angle B O A=\theta$ such that $\tan \theta=\frac{15}{8}, O A=85 m$ and $\angle O B A=90^{\circ}$.
Let $\mathrm{AB}=\mathrm{h} \mathrm{m}$.
From right $\triangle O B A$, we have
$\frac{A B}{O A}=\sin \theta=\frac{15}{17}\left[\because \tan \theta=\frac{15}{8} \Rightarrow \sin \theta=\frac{15}{17}\right]$
$\Rightarrow \frac{h}{85}=\frac{15}{17} \Rightarrow h=\frac{15}{17} \times 85=75$.
16.

Let $\mathrm{H}=$ Height of hill
Let $\mathrm{AD}=\mathrm{BC}=\mathrm{x}$ meters
$C E=C D+D E=10+h$
In right $\triangle \mathrm{ADE}, \tan 30^{\circ}=\frac{A D}{D E}$
$\frac{x}{h}=\frac{1}{\sqrt{3}}$
$\Rightarrow \mathrm{x}=\frac{h}{\sqrt{3}}$
In right $\triangle A D C, \frac{x}{10}=\cot 30^{\circ}=\sqrt{3}$
$\Rightarrow x=10 \sqrt{3}$
Equating the values of x , we get
$\frac{h}{\sqrt{3}}=10 \sqrt{3} \Rightarrow h=30 \mathrm{~cm}$
\therefore From H $=10+\mathrm{h}=10+30=40 \mathrm{~m}$
And $\mathrm{x}=$ distance of hill from ship $=10 \sqrt{3} \mathrm{~m}$
17. Let h be the height of the tower.
i.e, $P Q=h \mathrm{~m}$ and let $\mathrm{PX}=\mathrm{y} \mathrm{m}$

Now, draw $R S \| X P$,
Then, we have $\mathrm{RX}=\mathrm{SP}=40 \mathrm{~m}, \angle Q X P=60^{\circ}$ and $\angle Q R S=45^{\circ}$

In right angled $\triangle X P Q$,
$\tan 60^{\circ}=\frac{P}{B}=\frac{P Q}{X P}$
$\Rightarrow \frac{\sqrt{3}}{1}=\frac{h}{y}\left[\because \tan 60^{\circ}=\sqrt{3}\right]$
$\Rightarrow y=\frac{h}{\sqrt{3}}$..(i)
In right angled $\triangle R S Q$,
$\tan 45^{\circ}=\frac{P}{B}=\frac{Q S}{R S}$
$\Rightarrow \tan 45^{\circ}=\frac{P Q-S P}{X P}$
$\Rightarrow 1=\frac{h-40}{y}$
$\Rightarrow y=h-40 \ldots$...ii)
Now,solve Eq(i) and Eq(ii) , to find h and y.
$\frac{h}{\sqrt{3}}=h-40$
$(\sqrt{ } 3-1) h=40 \sqrt{ } 3$
$\mathrm{h}=\frac{40 \sqrt{3}}{\sqrt{3}-1}=\frac{40(1.732)}{1.732-1}=\frac{68.28}{0.732}=94.64$
$\Rightarrow y=94.64-40$
$\Rightarrow y=54.64$
$\Rightarrow P Q=94.64 m$ and $P X=54.64 m$
18.

Let the height of the tower be $\mathrm{AB}=\mathrm{hm}$
Let the building be $\mathrm{CD}=50 \mathrm{~m}$
and let distance between $\mathrm{BD}=\mathrm{x}$
Now, In $\triangle A B D$
$\frac{A B}{B D}=\tan 45^{\circ}$
$\stackrel{h}{x}=10$
h = x ..(i)
In $\triangle A E C, \frac{A E}{E C}=\tan 30^{\circ}$
$\Rightarrow \quad \frac{h-50}{x}=\frac{1}{\sqrt{3}}$

$$
\begin{equation*}
\Rightarrow \quad x=h \sqrt{3}-50 \sqrt{3} . \tag{ii}
\end{equation*}
$$

From (i) and (ii) we get
$h=\sqrt{3}(h-50)$
$h(\sqrt{3}-1)=50$
$h=\frac{50}{\sqrt{3}-1}=\frac{50(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}=\frac{50(\sqrt{3}+1)}{3-1}=25(1.73+1)$
$=25 \times 2.73=68.25$ meter
Hence the height of tower $=68.25$ meter
and distance between the building and tower $\mathrm{x}=\mathrm{h}=68.25$ meter
19.

The height of the tree $(\mathrm{DB})=15 \mathrm{~m}$
Suppose it broke at A and its top D touches the ground at C.
Suppose $\mathrm{AB}=\mathrm{h}$ Then $\mathrm{AD}=\mathrm{AC}=(15-\mathrm{h}) \mathrm{m}$
In $\triangle A B C$
$\sin 60^{\circ}=\frac{A B}{A C}$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{h}{15-h}$
$\Rightarrow 2 h=15 \sqrt{3}-\sqrt{3} h$
$\Rightarrow 2 h+\sqrt{3} h=15 \sqrt{3}$
$\Rightarrow h(2+\sqrt{3})=15 \sqrt{3}$
$\Rightarrow h=\frac{5 \sqrt{3}}{2+\sqrt{3}}$
$\Rightarrow h=\frac{5 \sqrt{3}}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}$
$\Rightarrow h=\frac{30 \sqrt{3}-45}{4-3}$
$\Rightarrow h=15(2 \sqrt{3}-3)$
$\Rightarrow h=15[2 \times 1.73-3]$
$\Rightarrow h=15[3.46-3]$
$\Rightarrow h=15 \times 0.46$
$\Rightarrow h=6.9 \mathrm{~m}$
\therefore Height above the ground from where the tree broke is 6.9 meter.
20. Let O be the centre of the balloon of radius r and P the eye of the observer. Let PA, PB be tangents from P to the balloon. Then, $\angle A P B=\alpha$.
$\therefore \angle A P O=\angle B P O=\frac{\alpha}{2}$
Let OL be perpendicular from O on the horizontal PX. We are given that the angle of the elevation of the centre of the balloon is β i.e, $\angle O P L=\beta$.
In $\triangle O A P$, we have
$\sin \frac{\alpha}{2}=\frac{O A}{O P}$
$\Rightarrow \sin \frac{\alpha}{2}=\frac{r}{O P}$

$\Rightarrow O P=r \operatorname{cosec} \frac{\alpha}{2}$
In $\triangle O P L$, we have
$\sin \beta=\frac{O L}{O P}$
$\Rightarrow O L=O P \sin \beta=\mathrm{r} \operatorname{cosec} \frac{\alpha}{2} \sin \beta$ [Using equation (i)]
Hence, the height of the centre of the balloon is $\mathrm{r} \sin \beta \operatorname{cosec} \frac{\alpha}{2}$

