CBSE Test Paper 02

Chapter 7 Coordinate Geometry

1. If one end of a diameter of a circle is $(4,6)$ and the centre is $(-4,7)$, then the other end is (1)
a. $(-12,8)$
b. $(8,-12)$
c. $(8,10)$
d. $(8,-6)$
2. The point where the perpendicular bisector of the line segment joining the points $A(2$, 5) and $B(4,7)$ cuts is: (1)
a. $(3,6)$
b. $(0,0)$
c. $(2,5)$
d. $(6,3)$
3. The point $(-3,5)$ lies in the \qquad quadrant (1)
a. IV
b. II
c. III
d. I
4. If the mid - point of the line segment joining the points $(a, b-2)$ and $(-2,4)$ is $(2,-3)$, then the values of ' a ' and ' b ' are (1)
a. 6,8
b. $6,-8$
c. $4,-5$
d. $-6,8$
5. Find the value of ' k ', if the point $(0,2)$ is equidistant from the points $(3, k)$ and $(k, 5)(1)$
a. 2
b. 0
c. 1
d. -1
6. If origin is the mid-point of the line segment joined by the points $(2,3)$ and (x, y) then
find the value of (x, y). (1)
7. Find the number of points on x-axis which are at a distance of 2 units from (2, 4). (1)
8. Find the perimeter of a triangle with vertices $(0,4),(0,0)$ and $(3,0)$. (1)
9. Find the distance between the points A and B in the following: $A(1,-3), B(4,1)(1)$
10. Find the coordinates of the point, where the line $x-y=5$ cuts Y-axis.(1)
11. Find the value of ' k ' if the points $(7,-2),(5,1),(3, k)$ are collinear. (2)
12. The point R divides the line segment $A B$ where $A(-4,0), B(0,6)$ are such that $A R=\frac{3}{4} A$ B. Find the coordinates of R. (2)
13. Find the centroid of the triangle whose vertices are given below: (3, -5), (-7, 4), (10, -2). (2)
14. Prove that the lines joining the middle points of the opposite sides of a quadrilateral and the join of the middle points of its diagonals meet in a point and bisect one another. (3)
15. Find the value of m for which the points with coordinates $(3,5),(m, 6)$ and $\left(\frac{1}{2}, \frac{15}{2}\right)$ are collinear. (3)
16. If the points $A(a,-11), B(5, b), C(2,15)$ and $D(1,1)$ are the vertices of a parallelogram $A B C D$, find the values of a and b. (3)
17. In the given triangle $A B C$ as shown in diagram D, E and F are the mid-points of $A B, B C$ and AC respectively. Find the area of $\triangle D E F$. (3)
18. Find the area of a quadrilateral $P Q R S$ whose vertices area $P(-5,7), Q(-4,-5), R(-1,-6)$ and $\mathrm{S}(4,5)$. (4)
19. If the point $\mathrm{A}(2,-4)$ is equidistant from $\mathrm{P}(3,8)$ and $\mathrm{Q}(-10, \mathrm{y})$ then find the values of y . Also find distance PQ. (4)
20. Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer: $(-1,-2),(1,0),(-1,2),(-3,0)(4)$

CBSE Test Paper 02

Chapter 7 Coordinate Geometry

Solution

1. a. $(-12,8)$

Explanation: one end of a diameter is $\mathrm{A}(4,6)$ and the centre is $\mathrm{O}(-4,7) \ldots$ (Given)

Let the other end be B
therefore coordinates of centre O are $x=\frac{(4+x)}{2}$
$\therefore-4=\frac{4+x}{2}$
$\Rightarrow 4+x=-8 \Rightarrow x=-12$
And $y=\frac{6+y}{2}$
$7=(6+y) / 2$
$\Rightarrow 6+y=14 \Rightarrow y=8$
Therefore, the required coordinates of other ends of the diameter are $(-12,8)$.
2. a. $(3,6)$

Explanation: Since, the point, where the perpendicular bisector of a line segment joining the points $A(2,5)$ and $B(4,7)$ cuts, is the mid-point of that line segment.
\therefore Coordinates of Mid-point of line segment $\mathrm{AB}=\left(\frac{2+4}{2}, \frac{5+7}{2}\right)=(3,6)$
3. b. II

Explanation: Since x-coordinate is negative and y-coordinate is positive.
Therefore, the point $(-3,5)$ lies in II quadrant.
4. b. 6, - 8

Explanation: Let the coordinates of midpoint $\mathrm{O}(2,-3)$ is equidistance from the points $\mathrm{A}(a, b-2)$ and $\mathrm{B}(-2,4)$.
$\therefore 2=\frac{a-2}{2}$
$\Rightarrow a-2=4 \Rightarrow a=6$
Also $-3=\frac{b-2+4}{2} \Rightarrow b+2=-6 \Rightarrow b=-8$
Therefore, $a=6$ and $b=-8$.
5. c. 1

Explanation: Let point $\mathrm{C}(0,2)$ is equidistant from the points $\mathrm{A}(3, k)$ and B $(k, 5)$.
i.e. $\mathrm{AC}=\mathrm{BC}$
$\therefore A C^{2}=B C^{2}$
$\Rightarrow(3-0)^{2}+(k-2)^{2}=(k-0)^{2}+(5-2)^{2}$
$\Rightarrow 9+k^{2}+4-4 k=k^{2}+9$
$\Rightarrow 4 k=4$
$\Rightarrow k=1$
6.
$\stackrel{\rightharpoonup}{\mathrm{A}(2,3)} \quad \overrightarrow{\mathrm{B}}(0,0) \quad \mathrm{C}(x, y)$
$\frac{2+x}{2}=0$
$\Rightarrow \mathrm{x}=-2$
$\frac{3+y}{2}=0$
$\Rightarrow \mathrm{y}=-3$.
7. Distance of the point $(2,4)$ from x-axis is 4 units. There is no point on x-axis which is at a distance of 2 units from the given point.
8. Here, $\mathrm{A} \rightarrow(0,4), \mathrm{B} \rightarrow(0,0), \mathrm{C} \rightarrow(3,0)$
$A B=\sqrt{(0-0)^{2}+(0-4)^{2}}=\sqrt{16}=4$
$\mathrm{BC}=\sqrt{(3-0)^{2}+(0-0)^{2}}=\sqrt{9}=3$
$\mathrm{CA}=\sqrt{(0-3)^{2}+(4-0)^{2}}$
$=\sqrt{9+16}=\sqrt{25}=5$
Therefore, Perimeter of triangle $=4+3+5=12$
9. $\mathrm{A}(1,-3), \mathrm{B}(4,1)$
$A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(4-1)^{2}+[1-(-3)]^{2}}$
$=\sqrt{(3)^{2}+(4)^{2}}=\sqrt{9+16}=\sqrt{25}=$ 5units
10. $x-y=5$ is a given line
$x-y=5$ cuts Y-axis.
Put $x=0$ in the equation of line $\mathrm{x}-\mathrm{y}=5$
$\Rightarrow(0)-y=5$
$\Rightarrow y=-5$

Therefore , the point is $(0,-5)$ cuts $\mathrm{x}-\mathrm{y}=5$ at Y-axis..
11. $(7,-2),(5,1),(3, k)$

Area of the triangle
$=\frac{1}{2}[7(1-\mathrm{k})+5(\mathrm{k}-(-2))+3(-2-1)]$
$=\frac{1}{2}[7-7 \mathrm{k}+5 \mathrm{k}+10-9]$
$=\frac{1}{2}[8-2 \mathrm{k}]=4-\mathrm{k}$
If the points are collinear, then area of the triangle $=0$
$\Rightarrow 4-\mathrm{k}=0$
$\Rightarrow \mathrm{k}=4$
12.

Let coordinates of R be (x, y)
$\mathrm{AR}=\frac{3}{4} \mathrm{AB}$ [Given]
But $A R+R B=A B$
$\Rightarrow \frac{3}{4} \mathrm{AB}+\mathrm{RB}=\mathrm{AB}$
$\Rightarrow \mathrm{RB}=\mathrm{AB}-\frac{3}{4} \mathrm{AB}=\frac{4 \mathrm{AB}-3 \mathrm{AB}}{4}=\frac{\mathrm{AB}}{4}$
$\frac{\mathrm{AR}}{\mathrm{RB}}=\frac{\frac{3}{4} \mathrm{AB}}{\frac{1}{4} \mathrm{AB}}=\frac{3}{4}: \frac{1}{4}=\frac{3}{4} \times \frac{4}{1}$
$=3: 1$
Thus, R divides AB in the raito $3: 1$.
$\mathrm{x}=\frac{3 \times 0+1 \times(-4)}{3+1}=\frac{0-4}{4}=\frac{-4}{4}=-1$
and $\mathrm{y}=\frac{3 \times 6+1 \times 0}{3+1}=\frac{18+0}{4}=\frac{18}{4}=\frac{9}{2}$
Thus, coordinates of R are $\left(-1, \frac{9}{2}\right)$
13. The given vertices of triangle are (3, -5), (-7, 4) and (10, -2).

Let (x, y) be the coordinates of the centroid. Then
$x=\frac{x_{1}+x_{2}+x_{3}}{3}=\frac{3+(-7)+10}{3}$
$=\frac{13-7}{3}=\frac{6}{3}=2$
$y=\frac{y_{1}+y_{2}+y_{3}}{3}=\frac{-5+4+(-2)}{3}$
$=\frac{-7+4}{3}=\frac{-3}{3}=-1$
\therefore The coordinates of the centroid are $(2,-1)$
14. Let $O B C D$ be the quadrilateral P, Q, R, S be the mid-points of $O B, C D, O D$ and $B C$.

Let the coordinates of O, B, C, D are $(0,0),(x, 0),(x, y)$ and $(0, y)$
Coordinates of P are $\left(\frac{x}{2}, 0\right)$
Coordinates of Q are $\left(\frac{x}{2}, y\right)$
Coordinates of R are $\left(0, \frac{y}{2}\right)$
Coordinates of S are $\left(x, \frac{y}{2}\right)$
Coordinates of mid-point of PQ are

$$
\left(\frac{\frac{x}{2}+\frac{x}{2}}{2}, \frac{0+y}{2}\right)=\left(\frac{x}{2}, \frac{y}{2}\right)
$$

Coordinates of mid-point of RS are $\left(\frac{(0+x)}{2}, \frac{\left(\frac{y}{2}+\frac{y}{2}\right)}{2}\right)=\left(\frac{x}{2}, \frac{y}{2}\right)$
Since, the coordinates of the mid-point of $\mathrm{PQ}=$ coordinates of mid-point of RS.
$\therefore \mathrm{PQ}$ and RS bisect each other.
15. If points are collinear, then one point divides the other two in the same ratio. Let point $(m, 6)$ divides the join of $(3,5)$ and $\left(\frac{1}{2}, \frac{15}{2}\right)$ in the ratio k: 1 .
Then, $(\mathrm{m}, 6)=\left(\frac{\frac{k}{2}+3}{k+1}, \frac{15 k}{k+1}\right)$
$\Rightarrow \mathrm{m}=\frac{\frac{k}{2}+3}{k+1} \ldots$ (i)
and $6=\frac{\frac{15}{2} k+5}{k+1}$
From (ii), we get $6 \mathrm{k}+6=\frac{15 k}{2}+5$
$\Rightarrow 6 k-\frac{15 k}{2}=-1$
$\Rightarrow-\frac{3}{2} k=-1$
$\Rightarrow \quad k=\frac{2}{3}$
Substituting, $k=\frac{2}{3}$ in (i), we get
$\mathrm{m}=\frac{\frac{1}{2} \times \frac{2}{3}+3}{\frac{2}{3}+1}=\frac{\frac{1}{3}+3}{\frac{2}{3}+1}=\frac{\frac{10}{3}}{\frac{5}{3}}=2$
Hence, for $\mathrm{m}=2$ points are collinear.
16.

Let $\mathrm{A}(\mathrm{a},-11), \mathrm{B}(5, \mathrm{~b}), \mathrm{C}(2,15)$ and $\mathrm{D}(1,1)$ be the given points.
We know that diagonals of parallelogram bisect each other.
Therefore, Coordinates of mid-point of AC = Coordinates of mid-point of BD
$\left(\frac{a+2}{2}, \frac{15-11}{2}\right)=\left(\frac{5+1}{2}, \frac{b+1}{2}\right)$
$\Rightarrow \frac{a+2}{2}=3 \quad$ and $\quad \frac{b+1}{2}=2$
$\Rightarrow \mathrm{a}+2=6$ and $\mathrm{b}+1=4$
$\Rightarrow \mathrm{a}=6-2$ and $\mathrm{b}=4-1$
$\Rightarrow \mathrm{a}=4$ and $\mathrm{b}=3$
Hence value of a and b is equal to 4 and 3 respectively.
17.

Let $D\left(x_{1}, y_{1}\right)$ be the mid-point of AB ,then,
$x_{1}=\frac{3-5}{2}=-1$ and $y_{1}=\frac{2-6}{2}=-2$
$\therefore \mathrm{D}=(-1,-2)$
Let $\mathrm{E}\left(x_{2}, y_{2}\right)$ be the mid-point of BC ,then,
$x_{2}=\frac{-5+7}{2}=1$
and $y_{2}{ }^{-}=\frac{-6+4}{2}=-1$
$\therefore \mathrm{E}=(1,-1)$
Let $\mathrm{F}\left(x_{3}, y_{3}\right)$ be the mid-point of AC ,then
$x_{3}=\frac{7+3}{2}=5$ and $y_{3}=\frac{4+2}{2}=3$
Now, area \triangle DEF
$=\frac{1}{2}[-(-1-3)+1(3+2)+5(-2+1)]$
$=\frac{1}{2}[4+5-5]$
$=2$ units
18.

Area $\square \mathrm{PQRS}=\operatorname{ar} \triangle \mathrm{PQS}+\mathrm{ar} \triangle \mathrm{QRS}$
$\operatorname{Ar} \triangle \mathrm{PQS}=\frac{1}{2}[(-5)(-5-5)+(-4)(5-7)+4(7+5)]$
$=\frac{1}{2}[50+8+48]$
$=\frac{1}{2} \times 106=53$ units
$\operatorname{Ar} \triangle \mathrm{QRS}=\frac{1}{2}[(-4)(-6-5)+(-1)(5+5)+4(-5+6)]$
$=\frac{1}{2}[44+(-10)+4]$
$=\frac{1}{2} \times 38=19$ units
Hence, area $\square \mathrm{PQRS}=53+19=72$ sq. units
19. According to the question, we are given that,
$\mathrm{PA}=\mathrm{QA}$
$\Rightarrow \mathrm{PA}^{2}=\mathrm{QA}^{2}$
$\Rightarrow(3-2)^{2}+(8+4)^{2}=(-10-2)^{2}+(y+4)^{2}$
$\Rightarrow 1^{2}+12^{2}=(-12)^{2}+y^{2}+16+8 y$
$\Rightarrow y^{2}+8 y+16-1=0$
$\Rightarrow y^{2}+8 y+15=0$
$\Rightarrow y^{2}+5 y+3 y+15=0$
$\Rightarrow \mathrm{y}(\mathrm{y}+5)+3(\mathrm{y}+5)=0$
$\Rightarrow(y+5)(y+3)=0$
$\Rightarrow y+5=0$ or $y+3=0$
$\Rightarrow y=-5$ or $y=-3$

So, the co-ordinates are $P(3,8), \mathrm{Q}_{1}(-10,-3), \mathrm{Q}_{2}(-10,-5)$.
Now, $P Q_{1}^{2}=(3+10)^{2}+(8+3)^{2}=13^{2}+11^{2}$
$\Rightarrow P Q_{1}^{2}=169+121$
$\Rightarrow P Q_{1}=\sqrt{290}$ units
and $P Q_{2}^{2}=(3+10)^{2}+(8+5)^{2}=13^{2}+13^{2}$
$=13^{2}[1+1]$
$\Rightarrow P Q_{2}^{2}=13^{2} \times 2$
$\Rightarrow P Q_{2}=13 \sqrt{2}$ units
Hence, $\mathrm{y}=-3,-5$ and $\mathrm{PQ}=\sqrt{290}$ units and $13 \sqrt{2}$ units.
20. (-1, -2), (1, 0), (-1, 2), (-3, 0)

Let $\mathrm{A} \rightarrow(-1,-2), \mathrm{B} \rightarrow(1,0)$
$\mathrm{C} \rightarrow(-1,2)$ and $\mathrm{D} \rightarrow(-3,0)$
Then, $A B=\sqrt{[1-(-1)]^{2}+[0-(-2)]^{2}}$
$=\sqrt{(2)^{2}+(2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$B C=\sqrt{(-1-1)^{2}+(2-0)^{2}}$
$=\sqrt{(-2)^{2}+(2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$C D=\sqrt{[(-3)-(-1)]^{2}+(0-2)^{2}}$
$=\sqrt{(-2)^{2}+(-2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$D A=\sqrt{[(-1)-(-3)]^{2}+(-2-0)^{2}}$
$=\sqrt{(2)^{2}+(-2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$A C=\sqrt{[(-1)-(-1)]^{2}+[(2)-(-2)]^{2}}=4$
$B D=\sqrt{[(-3)-(1)]^{2}+(0-0)^{2}}=4$
Since $A B=B C=C D=D A$ (i.e., all the four sides of the quadrilateral $A B C D$ are equal) and $\mathrm{AC}=\mathrm{BD}$ (i.e. diagonals of the quadrilateral ABCD are equal). Therefore, ABCD is a square.

