CBSE Test Paper 02

Chapter 7 Coordinate Geometry

1. If one end of a diameter of a circle is (4, 6) and the centre is (-4, 7), then the other end

	is (1)
	a. (-12, 8)
	b. (8, –12)
	c. (8, 10)
	d. (8, – 6)
2.	The point where the perpendicular bisector of the line segment joining the points A(2,
	5) and B(4, 7) cuts is: (1)
	a. (3, 6)
	b. (0, 0)
	c. (2, 5)
	d. (6, 3)
3.	The point (– 3, 5) lies in the quadrant (1)
	a. IV
	b. II
	c. III
	d. I
4.	If the mid – point of the line segment joining the points (a, b – 2) and (– 2, 4) is $(2, – 3)$,
	then the values of 'a' and 'b' are (1)
	a. 6, 8
	b. 6, – 8
	c. 4, – 5
	d6,8
5.	Find the value of 'k', if the point (0, 2) is equidistant from the points (3, k) and (k, 5) (1)
	a. 2
	b. 0
	c. 1
•	d1
6.	If origin is the mid-point of the line segment joined by the points (2, 3) and (x, y) then

- find the value of (x, y). (1)
- 7. Find the number of points on x-axis which are at a distance of 2 units from (2, 4). (1)
- 8. Find the perimeter of a triangle with vertices (0, 4), (0,0) and (3,0). (1)
- 9. Find the distance between the points A and B in the following:A(1,-3), B(4, 1) (1)
- 10. Find the coordinates of the point, where the line x y = 5 cuts Y-axis.(1)
- 11. Find the value of 'k' if the points (7, -2), (5, 1), (3, k) are collinear. (2)
- 12. The point R divides the line segment AB where A(-4, 0), B(0, 6) are such that AR = $\frac{3}{4}$ A B. Find the coordinates of R. (2)
- 13. Find the centroid of the triangle whose vertices are given below: (3, -5), (-7, 4), (10, -2). **(2)**
- 14. Prove that the lines joining the middle points of the opposite sides of a quadrilateral and the join of the middle points of its diagonals meet in a point and bisect one another. (3)
- 15. Find the value of m for which the points with coordinates (3, 5), (m, 6) and $\left(\frac{1}{2}, \frac{15}{2}\right)$ are collinear. **(3)**
- 16. If the points A (a, -11), B (5, b), C (2, 15) and D (1, 1) are the vertices of a parallelogram ABCD, find the values of a and b. (3)
- 17. In the given triangle ABC as shown in diagram D, E and F are the mid-points of AB, BC and AC respectively. Find the area of Δ DEF. (3)
- 18. Find the area of a quadrilateral PQRS whose vertices area P(- 5, 7), Q(- 4, 5), R (-1, 6) and S(4, 5). **(4)**
- 19. If the point A(2, -4) is equidistant from P(3, 8) and Q(-10, y) then find the values of y. Also find distance PQ. **(4)**
- 20. Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer:

(-1, -2), (1, 0), (-1, 2), (-3, 0) **(4)**

CBSE Test Paper 02

Chapter 7 Coordinate Geometry

Solution

1. a. (-12, 8)

Explanation: one end of a diameter is A(4, 6) and the centre is O(-4, 7) (Given)

Let the other end be B

therefore coordinates of centre O are $x=rac{(4+x)}{2}$

$$\therefore -4 = \frac{4+x}{2}$$

$$\Rightarrow$$
4 + $x = -8 \Rightarrow x = -12$

And
$$y=rac{6+y}{2}$$

$$7 = (6 + y) / 2$$

$$\Rightarrow$$
6 + y = 14 \Rightarrow y = 8

Therefore, the required coordinates of other ends of the diameter are (-12,8).

2. a. (3, 6)

Explanation: Since, the point, where the perpendicular bisector of a line segment joining the points A(2, 5) and B(4, 7) cuts, is the mid-point of that line segment.

 \therefore Coordinates of Mid-point of line segment AB = $\left(\frac{2+4}{2}, \frac{5+7}{2}\right)$ = (3,6)

3. b. II

Explanation: Since x-coordinate is negative and y-coordinate is positive. Therefore, the point (-3,5) lies in II quadrant.

4. b. 6, -8

Explanation: Let the coordinates of midpoint ${\rm O}(2,-3)$ is equidistance from the points ${\rm A}(a,b-2)$ and ${\rm B}(-2,4)$.

$$\therefore 2 = \frac{a-2}{2}$$

$$\Rightarrow a-2=4 \Rightarrow a=6$$

Also
$$-3=rac{b-2+4}{2}{\Rightarrow}b+2=-6{\Rightarrow}b=-8$$

Therefore, a=6 and b=-8.

5. c. 1

Explanation: Let point C (0, 2) is equidistant from the points ${\bf A}(3,k)$ and B (k,5) .

i.e.
$$AC = BC$$

 $\Rightarrow k = 1$

 \Rightarrow y = -3.

$$AC^{2} = BC^{2}$$

$$\Rightarrow (3-0)^{2} + (k-2)^{2} = (k-0)^{2} + (5-2)^{2}$$

$$\Rightarrow 9 + k^{2} + 4 - 4k = k^{2} + 9$$

$$\Rightarrow 4k = 4$$

$$\frac{2+x}{2} = 0$$

$$\Rightarrow x = -2$$

$$\frac{3+y}{2} = 0$$

7. Distance of the point (2, 4) from x-axis is 4 units. There is no point on x-axis which is at a distance of 2 units from the given point.

8. Here,
$$A \rightarrow (0,4), B \rightarrow (0,0), C \rightarrow (3,0)$$

 $AB = \sqrt{(0-0)^2 + (0-4)^2} = \sqrt{16} = 4$
 $BC = \sqrt{(3-0)^2 + (0-0)^2} = \sqrt{9} = 3$
 $CA = \sqrt{(0-3)^2 + (4-0)^2}$
 $= \sqrt{9+16} = \sqrt{25} = 5$

Therefore, Perimeter of triangle = 4 + 3 + 5 = 12

9. A(1, -3), B(4, 1)
$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(4 - 1)^2 + [1 - (-3)]^2}$$
$$= \sqrt{(3)^2 + (4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5units$$

10.
$$x - y = 5$$
 is a given line

$$x - y = 5$$
 cuts Y-axis.

Put
$$x=0$$
 in the equation of line x- y = 5

$$\Rightarrow$$
 (0) $-y = 5$

$$\Rightarrow y = -5$$

Therefore, the point is (0,-5) cuts x - y = 5 at Y-axis..

Area of the triangle

$$= \frac{1}{2} [7(1-k) + 5(k-(-2)) + 3(-2-1)]$$

$$= \frac{1}{2} [7-7k + 5k + 10-9]$$

$$= \frac{1}{2} [8-2k] = 4-k$$

If the points are collinear, then area of the triangle = 0

$$\Rightarrow 4 - k = 0$$

$$\Rightarrow$$
 k = 4

Let coordinates of R be (x, y)

$$AR = \frac{3}{4} AB [Given]$$

But AR + RB = AB

$$\Rightarrow \frac{3}{4}AB + RB = AB$$

$$\Rightarrow$$
 RB = AB - $\frac{3}{4}$ AB = $\frac{4AB-3AB}{4} = \frac{AB}{4}$

$$\frac{AR}{RB} = \frac{\frac{3}{4}AB}{\frac{1}{4}AB} = \frac{3}{4} : \frac{1}{4} = \frac{3}{4} \times \frac{4}{1}$$

Thus, R divides AB in the raito 3:1.

$$x = \frac{3 \times 0 + 1 \times (-4)}{3 + 1} = \frac{0 - 4}{4} = \frac{-4}{4} = -1$$
and
$$y = \frac{3 \times 6 + 1 \times 0}{3 + 1} = \frac{18 + 0}{4} = \frac{18}{4} = \frac{9}{2}$$

Thus, coordinates of R are $\left(-1, rac{9}{2}
ight)$

13. The given vertices of triangle are (3, -5), (-7, 4) and (10, -2).

Let (x, y) be the coordinates of the centroid. Then

$$x = \frac{x_1 + x_2 + x_3}{3} = \frac{3 + (-7) + 10}{3}$$
 $= \frac{13 - 7}{3} = \frac{6}{3} = 2$
 $y = \frac{y_1 + y_2 + y_3}{3} = \frac{-5 + 4 + (-2)}{3}$
 $= \frac{-7 + 4}{3} = \frac{-3}{3} = -1$

 \therefore The coordinates of the centroid are (2, -1)

14. Let OBCD be the quadrilateral P, Q, R, S be the mid-points of OB, CD, OD and BC.

Let the coordinates of O,B, C, D are (0, 0), (x, 0), (x, y) and (0, y)

Coordinates of P are $(\frac{x}{2},0)$

Coordinates of Q are $(\frac{x}{2}, y)$

Coordinates of R are $(0, \frac{y}{2})$

Coordinates of S are $(x, \frac{\bar{y}}{2})$

Coordinates of mid-point of PQ are

$$\left(rac{rac{x}{2}+rac{x}{2}}{2},rac{0+y}{2}
ight)=\left(rac{x}{2},rac{y}{2}
ight)$$

Coordinates of mid-point of RS are
$$\left(\frac{(0+x)}{2},\frac{\left(\frac{y}{2}+\frac{y}{2}\right)}{2}\right)=\left(\frac{x}{2},\frac{y}{2}\right)$$

Since, the coordinates of the mid-point of PQ = coordinates of mid-point of RS.

- .: PQ and RS bisect each other.
- 15. If points are collinear, then one point divides the other two in the same ratio.

Let point (m, 6) divides the join of (3, 5) and $\left(\frac{1}{2}, \frac{15}{2}\right)$ in the ratio k: 1.

Then, (m, 6) =
$$\left(\frac{\frac{k}{2}+3}{k+1}, \frac{15k}{k+1}\right)$$

$$\Rightarrow$$
 m = $\frac{\frac{k}{2}+3}{k+1}$...(i)

and
$$6 = \frac{\frac{15}{2}k + 5}{k + 1}$$
 ...(ii)

From (ii), we get 6k + 6 = $\frac{15k}{2}$ + 5 $\Rightarrow 6k - \frac{15k}{2}$ = - 1

$$\Rightarrow 6k - \frac{15k}{2} = -1$$

$$\Rightarrow -\frac{3}{2}k = -1$$

$$\Rightarrow k = \frac{2}{3}$$

Substituting,
$$k = \frac{2}{3}$$
 in (i), we get $m = \frac{\frac{1}{2} \times \frac{2}{3} + 3}{\frac{2}{3} + 1} = \frac{\frac{10}{3}}{\frac{2}{3} + 1} = \frac{10}{\frac{5}{3}} = 2$

Hence, for m = 2 points are collinear.

Let A(a, -11), B(5, b), C(2, 15) and D(1, 1) be the given points.

We know that diagonals of parallelogram bisect each other.

Therefore, Coordinates of mid-point of AC = Coordinates of mid-point of BD

$$\left(rac{a+2}{2},rac{15-11}{2}
ight)=\left(rac{5+1}{2},rac{b+1}{2}
ight)$$
 $\Rightarrow rac{a+2}{2}=3 \quad ext{and} \quad rac{b+1}{2}=2$

$$\Rightarrow$$
 a + 2 = 6 and b + 1 = 4

$$\Rightarrow$$
 a = 6 - 2 and b = 4 - 1

$$\Rightarrow$$
 a = 4 and b = 3

Hence value of a and b is equal to 4 and 3 respectively.

Let $D(x_1,y_1)$ be the mid-point of AB,then,

$$x_1$$
 = $\frac{3-5}{2}$ $=$ -1 and y_1 = $\frac{2-6}{2}$ $=$ -2

$$D = (-1, -2)$$

Let $\operatorname{E}(x_2,y_2)$ be the mid-point of BC,then,

$$x_2$$
 = $\frac{-5+7}{2}=1$

and
$$y_2 = \frac{-6+4}{2} = -1$$

 \therefore E = (1, -1)

Let $F(x_3,y_3)$ be the mid-point of AC,then

$$x_3=rac{7+3}{2}=5$$
 and y_3 = $rac{4+2}{2}=3$

Now, area $\Delta {
m DEF}$

$$= \frac{1}{2} [-(-1-3) + 1(3+2) + 5(-2+1)]$$

= $\frac{1}{2} [4+5-5]$

= 2 units

18.

Area \square PQRS = ar \triangle PQS + ar \triangle QRS

Ar
$$\triangle$$
 PQS = $\frac{1}{2}$ [(-5)(- 5 - 5) + (-4)(5 - 7) + 4(7 + 5)]

$$=\frac{1}{2}[50+8+48]$$

=
$$\frac{1}{2}$$
 \times 106 = 53 units

Ar
$$\triangle$$
 QRS = $\frac{1}{2}$ [(-4)(-6-5) + (-1)(5+5) + 4(-5+6)]

$$= \frac{1}{2} \left[44 + (-10) + 4 \right]$$

$$=\frac{1}{2} \times 38 = 19 \text{ units}$$

Hence, area \square PQRS = 53 + 19 = 72 sq. units

19. According to the question, we are given that,

$$PA = QA$$

$$\Rightarrow PA^2 = QA^2$$

$$\Rightarrow$$
 $(3-2)^2 + (8+4)^2 = (-10-2)^2 + (y+4)^2$

$$\Rightarrow$$
 1² + 12² = (-12)² + y² + 16 + 8y

$$\Rightarrow$$
 y² + 8y + 16 - 1 = 0

$$\Rightarrow y^2 + 8y + 15 = 0$$

$$\Rightarrow$$
 y² + 5y + 3y + 15 = 0

$$\Rightarrow y(y+5)+3(y+5)=0$$

$$\Rightarrow (y + 5) (y + 3) = 0$$

$$\Rightarrow$$
 y + 5 = 0 or y + 3 = 0

$$\Rightarrow$$
 y = -5 or y = -3

So, the co-ordinates are P(3, 8), $Q_1(-10, -3)$, $Q_2(-10, -5)$.

Now,
$$PQ_1^2 = (3+10)^2 + (8+3)^2 = 13^2 + 11^2$$

 $\Rightarrow PQ_1^2 = 169 + 121$
 $\Rightarrow PQ_1 = \sqrt{290}$ units
and $PQ_2^2 = (3+10)^2 + (8+5)^2 = 13^2 + 13^2$
 $= 13^2[1+1]$
 $\Rightarrow PQ_2^2 = 13^2 \times 2$
 $\Rightarrow PQ_2 = 13\sqrt{2}$ units
Hence, $y = -3$, -5 and $PQ = \sqrt{290}$ units and $13\sqrt{2}$ units.

20. (-1, -2), (1, 0), (-1, 2), (-3, 0)

Let
$$A \to (-1, -2)$$
, $B \to (1, 0)$
 $C \to (-1, 2)$ and $D \to (-3, 0)$
Then, $AB = \sqrt{[1 - (-1)]^2 + [0 - (-2)]^2}$
 $= \sqrt{(2)^2 + (2)^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}$
 $BC = \sqrt{(-1 - 1)^2 + (2 - 0)^2}$
 $= \sqrt{(-2)^2 + (2)^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}$
 $CD = \sqrt{[(-3) - (-1)]^2 + (0 - 2)^2}$
 $= \sqrt{(-2)^2 + (-2)^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}$
 $DA = \sqrt{[(-1) - (-3)]^2 + (-2 - 0)^2}$
 $= \sqrt{(2)^2 + (-2)^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}$
 $AC = \sqrt{[(-1) - (-1)]^2 + [(2) - (-2)]^2} = 4$
 $BD = \sqrt{[(-3) - (1)]^2 + (0 - 0)^2} = 4$

Since AB = BC = CD = DA (i.e., all the four sides of the quadrilateral ABCD are equal) and AC = BD (i.e. diagonals of the quadrilateral ABCD are equal). Therefore, ABCD is a square.