CBSE Test Paper 01

Chapter 7 Coordinate Geometry

1. The distance between the points $A\left(p \sin 25^{\circ}, 0\right)$ and $B\left(0, p \sin 65^{\circ}\right)$ is (1)
a. 0 units
b. p units
c. p2 units
d. 1 units
2. If the points $(x, y),(1,2)$ and $(7,0)$ are collinear, then the relation between ' x ' and ' y ' is given by (1)
a. $3 x-y-7=0$
b. $3 x+y+7=0$
c. $x+3 y-7=0$
d. $x-3 y+7=0$
3. If the distance between the points $(p,-5)$ and $(2,7)$ is 13 units, then the value of ' p ' is (1)
a. $-3,-7$
b. $3,-7$
c. 3,7
d. $-3,7$
4. If the vertices of a triangle are $(1,1),(-2,7)$ and $(3,-3)$, then its area is (1)
a. 0 sq. units
b. 2 sq. units
c. 24 sq. units
d. 12 sq. units
5. The distance between the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by (1)
a. $\sqrt{\left(x_{2}+x_{1}\right)^{2}+\left(y_{2}+y_{1}\right)^{2}}$ units
b. $\sqrt{\left(x_{2}+x_{1}\right)^{2}-\left(y_{2}+y_{1}\right)^{2}}$ units
c. $\sqrt{\left(x_{2}-x_{1}\right)^{2}-\left(y_{2}-y_{1}\right)^{2}}$ units
d. $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ units
6. If the points $A(x, 2), B(-3,-4), C(7,-5)$ are collinear, then find the value of x. (1)
7. Find the distance between the points A and B in the following : $A(a, 0), B(0, a)(1)$
8. Find the perpendicular distance of $\mathrm{A}(5,12)$ from the y-axis. (1)
9. Find the distance of the point (-4, -7) from the y-axis. (1)
10. Find the coordinates of the centroid of a triangle whose vertices are $(0,6),(8,12)$ and (8,0). (1)
11. Find the distance between the points: $A(-6,-4)$ and $B(9,-12)(2)$
12. Find the condition that the point (x, y) may lie on the line joining (3, 4) and ($-5,-6$). (2)
13. If $P(x, y)$ is any point on the line joining the points $A(a, 0)$ and $B(0, b)$, then show that $\frac{x}{a}+\frac{y}{b}=1$. (2)
14. The area of triangle formed by the points (p,2-2p), (1, p, 2p) and ($-4-p, 6-2 p)$ is 70 sq. units. How many integral values of p are possible. (3)
15. Point A is on x-axis, point B is on y-axis and the point P lies on line segment $A B$, such that $P(4,-5)$ and $A P: P B=5: 3$. Find the coordinates of point A and B. (3)
16. Show that four points $(0,-1),(6,7),(-2,3)$ and $(8,3)$ are the vertices of a rectangle. Also, find its area. (3)
17. Find the co-ordinates of the points of trisection of the line segment joining the points $\mathrm{A}(1$, -2) and B(-3,4). (3)
18. Show that the points $A(3,5), B(6,0), C(1,-3)$ and $D(-2,2)$ are the vertices of a square ABCD. (4)
19. $A(4,2), B(6,5)$ and $C(1,4)$ are the vertices of $\triangle A B C$.
i. The median from A meets $B C$ in D. Find the coordinates of the point D.
ii. Find the coordinates of point P on AD such that $\mathrm{AP}: \mathrm{PD}=2: 1$.
iii. Find the coordinates of the points Q and R on medians BE and CP respectively such that $\mathrm{BQ}: \mathrm{QE}=2: 1$ and $\mathrm{CR}: \mathrm{RF}=2: 1$.
iv. What do you observe? (4)
20. Find the lengths of the medians of a $\Delta \mathrm{ABC}$ whose vertices are $\mathrm{A}(0,-1) \mathrm{B}(2,1)$ and $\mathrm{C}(0$, 3). (4)

CBSE Test Paper 01

Chapter 07 Coordinate Geometry

Solution

1. b. punits

Explanation: The distance between point A and point $B=$

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{\left(0-p \sin 25^{\circ}\right)^{2}+\left(p \sin 65^{\circ}-0\right)^{2}} \\
& =\sqrt{p^{2} \sin ^{2} 25^{\circ}+p^{2} \sin ^{2} 65^{\circ}} \\
& =p \sqrt{\sin ^{2} 25^{\circ}+\sin ^{2}\left(90^{\circ}-25^{\circ}\right)} \\
& =p \sqrt{\sin ^{2} 25^{\circ}+\cos ^{2} 25^{\circ}}\left[\because \sin \left(90^{\circ}-\theta\right)=\cos \theta\right]
\end{aligned}
$$

$=p$ units
$\left[\because \cos ^{2} \theta+\sin ^{2} \theta=1\right]$
2. c. $x+3 y-7=0$

Explanation: $>\therefore \frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|=0$
$\Rightarrow \frac{1}{2}|x(2-0)+1(0-y)+7(y-2)|=0$
$\Rightarrow \frac{1}{2}|2 x-y+7 y-14|=0$
$\Rightarrow 2 x+6 y-14=0 \Rightarrow x+3 y-7=0$
3. d. $-3,7$

Explanation: Let point A be $(p,-5)$ and point $B(2,7)$ and distance between A and $B=$
13 units
$\therefore 13=\sqrt{(2-p)^{2}+(7+5)^{2}}$
$\Rightarrow 13=\sqrt{4+p^{2}-4 p+144}$
$\Rightarrow 13=\sqrt{p^{2}-4 p+148}$
$\Rightarrow 169=p^{2}-4 p+148$
$\Rightarrow p^{2}-4 p-21=0$
$=\mathrm{p}^{2}-7 \mathrm{p}+3 \mathrm{p}-21=0$
$=p(p-7)+3(p-7)=0$
$\Rightarrow(p-7)(p+3)=0$
$\Rightarrow p=7, p=-3$
4. a. 0 sq. units

Explanation: Given: $\left(x_{1}, y_{1}\right)=(1,1),\left(x_{2}, y_{2}\right)=(-2,7)$ and $\left(x_{3}, y_{3}\right)=(3,-3)$, then the Area of triangle
$\therefore \frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$
$=\frac{1}{2}|1(7+3)+(-2)(-3-1)+3(1-7)|$
$=\frac{1}{2}|10+8-18|$
$=\frac{1}{2}|0|=0$ sq. units
Also therefore the three given points(vertices) are collinear.
5. d. $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ units

Explanation: The distance between the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ units. This is known as distance formula.
6. Since the points are collinear, then,

Area of triangle $=0$
$\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0$
$\frac{1}{2}[x(-4+5)+(-3)(-5-2)+7(2+4)]=0$
$x+21+42=0$
$x=-63$
7. $\mathrm{A}(\mathrm{a}, 0), \mathrm{B}(0, \mathrm{a})$
$A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(0-a)^{2}+(a-0)^{2}}$
$=\sqrt{\left(a^{2}+a^{2}\right)}=\sqrt{2 a^{2}}=\sqrt{2}$ a units
8. The point on the y-axis is $(0,12)$
\therefore Distance between $(5,12)$ and $(0,12)$
$\mathrm{d}=\sqrt{(0-5)^{2}+(12-12)^{2}}$
$=\sqrt{25+0}$
$=5$ units
9. Points are $(-4,-7)$ and $(0,-7)$

Distance $=\sqrt{(0+4)^{2}+(-7+7)^{2}}$
$=\sqrt{4^{2}+0}=\sqrt{16}=4$ units
10. Coordinates of the centroid of a triangle whose vertices are $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right),\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ are
$\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$
$=\left(\frac{0+8+8}{3}, \frac{6+12+0}{3}\right)=\left(\frac{16}{3}, \frac{18}{3}\right)=\left(\frac{16}{3}, 6\right)$.
11. The given points are $A(-6,-4)$ and $B(9,-12)$

Then, $\left(x_{1}=-6, y_{1}=-4\right)$ and $\left(x_{2}=9, y_{2}=-12\right)$
$\therefore A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(6+9)^{2}+(-12+4)^{2}}=\sqrt{(15)^{2}+(-8)^{2}}$
$=\sqrt{225+64}=\sqrt{289}=17$ units
12. Since the point $P(x, y)$ lies on the line joining $A(3,4)$ and $B(-5,-6)$. Therefore, P, A and B are collinear points.

$\therefore\{4 x+3 \times-6+(-5) \times y\}-\{3 y+(-5) \times 4+x \times(-6)\}=0$
$\Rightarrow\{4 \mathrm{x}-18-5 \mathrm{y})-(3 \mathrm{y}-6 \mathrm{x}-20)=0$
$\Rightarrow 10 \mathrm{x}-8 \mathrm{y}+2=0 \Rightarrow 5 \mathrm{x}-4 \mathrm{y}+1=0$
Hence, the point (x, y) lies on the line joining $(3,4)$ and $(-5,-6)$, if $5 x-4 y+1=0$
13. It is given that the point $P(x, y)$ lies on the line segment joining points $A(a, 0)$ and $B(0$, b).

Therefore, points $P(x, y), A(a, 0)$ and $B(0, b)$ are collinear points.

$\therefore(x \times 0+a \times b+0 \times y)-(a \times y+0 \times 0+x \times b)=0$
$\Rightarrow \mathrm{ab}-(\mathrm{ay}+\mathrm{bx})=0$
$\Rightarrow a b=a y+b x$
$\Rightarrow \frac{a b}{a b}=\frac{a y}{a b}+\frac{b x}{a b}$ [Dividing throughout by ab]
$\Rightarrow 1=\frac{y}{b}+\frac{x}{a}$ or $\frac{x}{a}+\frac{y}{b}=1$
14. Area $=\frac{1}{2}[p(2 p-6+2 p)+(1-p)(6-2 p-2+2 p)+(-4-p)(2-2 p-2 p)]$
$\Rightarrow \frac{1}{2}[p(4 p-6)+(1-p) 4+(-4-p)(2-4 p)]=70$
$\Rightarrow 4 \mathrm{p}^{2}-6 \mathrm{p}+4-4 \mathrm{p}-8+16 \mathrm{p}-2 \mathrm{p}+4 \mathrm{p}^{2}=140$
$\Rightarrow \frac{1}{2}[-13 \mathrm{k}-9]=15$
$\Rightarrow[-13 \mathrm{k}-9]=30-13 \mathrm{k}-9=30$ or $-13 \mathrm{k}-9=-30$
$\mathrm{k}=-3$ or $\mathrm{k}=\frac{21}{13}$
When $k=-3$, coordinates $=15$ sq. units
$\Rightarrow \frac{1}{2} \times \mathrm{AB} \times$ Altitude $=15$
$\Rightarrow \frac{1}{2} \times 3 \times$ Altitude $=15$
\Rightarrow Altitude $=10$ units
15. Let coordinates of A are $(x, 0)$ and coordinates of B are $(0, y)$

Using section formula, we get
$4=\frac{5 \times 0+3 \times x}{5+3}$
$\Rightarrow 32=3 \mathrm{x}$
$\Rightarrow \mathrm{x}=\frac{32}{3}$
Similarly, $5=\frac{5 \times y+3 \times 0}{5+3}$
$\Rightarrow 40=5 y$
$\Rightarrow \mathrm{y}=8$
\therefore Coordinate of A are $\left(\frac{32}{3}, 0\right)$ and coordinates of B are $(0,8)$.
16. Let $\mathrm{A}(0-1)$, $\mathrm{B}(6,7), \mathrm{C}(-2,3)$ and $\mathrm{D}(8,3)$ be the given points. Then,
$\mathrm{AD}=\sqrt{(8-0)^{2}+(3+1)^{2}}=\sqrt{64+16}=4 \sqrt{5}$
$\mathrm{BC}=\sqrt{(6+2)^{2}+(7-3)^{2}}=\sqrt{64+16}=4 \sqrt{5}$
$\mathrm{AC}=\sqrt{(-2-0)^{2}+(3+1)^{2}}=\sqrt{4+16}=2 \sqrt{5}$
and, $\mathrm{BD}=\sqrt{(8-6)^{2}+(3-7)^{2}}=\sqrt{4+16}=2 \sqrt{5}$
Therefore, $\mathrm{AD}=\mathrm{BC}$ and $\mathrm{AC}=\mathrm{BD}$
So, ADBC is a parallelogram
Now, $\mathrm{AB}=\sqrt{(6-0)^{2}+(7+1)^{2}}=\sqrt{36+64}=10$
and, $\mathrm{CD}=\sqrt{(8+2)^{2}+(3-3)^{2}}=10$
Clearly, $\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{DB}^{2}$ and $\mathrm{CD}^{2}=\mathrm{CB}^{2}+\mathrm{BD}^{2}$
Hence, ADBC is a rectangle.
Area of rectangle $\mathrm{ADBC}=A D \times D B=(4 \sqrt{5} \times 2 \sqrt{5})$ sq. units $=40$ sq. units.
17.

Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ divides AB into 3 equal parts.
$\therefore \mathrm{P}$ divides AB in the ratio of $1: 2$
$\therefore x_{1}=\frac{1 \times-3+2 \times 1}{1+3}$ and $y_{1}=\frac{1 \times 4+2 \times-2}{1+2}$
$\Rightarrow x_{1}=\frac{2-3}{3}=\frac{-1}{3} \quad y_{1}=\frac{-4+4}{3}=0$
\therefore Co-ordinates of $\mathrm{P}\left(-\frac{1}{3}, 0\right)$.
Q is the mid-point of PB .
$\therefore x_{2}=\frac{\frac{-1}{3}+(-3)}{2}$
$=\frac{-10}{6}=\frac{-5}{3}$
$y_{2}=\frac{0+4}{2}=2$
\therefore Co-ordinates of $\mathrm{Q}\left(-\frac{5}{3}, 2\right)$.
18. Let $\mathrm{A}(3,5), \mathrm{B}(6,0), \mathrm{C}(1,-3)$ and $\mathrm{D}(-2,2)$ be the angular points of a quadrilateral ABCD . Join AC and BD

Now $A B=\sqrt{(6-3)^{2}+(0-5)^{2}}$
$=\sqrt{3^{2}+(-5)^{2}}$
$=\sqrt{9+25}=\sqrt{34}$ units,
$B C=\sqrt{(1-6)^{2}+(-3-0)^{2}}=\sqrt{(-5)^{2}+(-3)^{2}}$
$=\sqrt{25+9}=\sqrt{34}$ units,
$C D=\sqrt{(-2-1)^{2}+(2+3)^{2}}=\sqrt{(-3)^{2}+5^{2}}$
$=\sqrt{9+25}=\sqrt{34}$ units,
and $D A=\sqrt{(3+2)^{2}+(5-2)^{2}}=\sqrt{5^{2}+3^{2}}$
$=\sqrt{25+9}=\sqrt{34}$ units,
Thus, $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$.
Diagonal $A C=\sqrt{(1-3)^{2}+(-3-5)^{2}}=\sqrt{(-2)^{2}+(-8)^{2}}$
$=\sqrt{4+64}=\sqrt{68}=2 \sqrt{17}$ units
Diagonal $B D=\sqrt{(-2-6)^{2}+(2-0)^{2}}$
$=\sqrt{(-8)^{2}+2^{2}}=\sqrt{64+4}$
$=\sqrt{68}=2 \sqrt{17}$ units
$\therefore \quad \operatorname{diag} \cdot A C=\operatorname{diag} . B D$
Thus, ABCD is a quadrilateral in which all sides are equal and the diagonals are equal. Hence, quad. ABCD is a square.
19.

i. Median AD of the triangle will divide the side BC in two equal parts. So D is the midpoint of side $B C$.
Coordinates of $D=\left(\frac{6+1}{2}, \frac{5+4}{2}\right)=\left(\frac{7}{2}, \frac{9}{2}\right)$
ii. Point P divides the side AD in a ratio $2: 1$.

Coordinates of $P=\left(\frac{2 \times \frac{7}{2}+1 \times 4}{2+1}, \frac{2 \times \frac{9}{2}+1 \times 2}{2+1}\right)$
$=\left(\frac{11}{3}, \frac{11}{3}\right)$
iii. Median BE of the triangle will divide the side AC in two equal parts. So E is the midpoint of side AC.
Coordinates of $E=\left(\frac{4+1}{2}, \frac{2+4}{2}\right)=\left(\frac{5}{2}, 3\right)$
Point Q divides the side BE in a ratio 2:1
Coordinates of $Q=\left(\frac{2 \times \frac{5}{2}+1 \times 6}{2+1}, \frac{2 \times 3+1 \times 5}{2+1}\right)=\left(\frac{11}{3}, \frac{11}{3}\right)$
Median CF of the triangle will divide the side AB in two equal parts. So F is the midpoint of side AB.
Coordinates of $F=\left(\frac{4+6}{2}, \frac{2+5}{2}\right)=\left(5, \frac{7}{2}\right)$
Point R divides the side CF in a ratio 2:1.

Coordinates of $R=\left(\frac{2 \times 5+1 \times 1}{2+1}, \frac{2 \times \frac{7}{2}+1 \times 4}{2+1}\right)=\left(\frac{11}{3}, \frac{11}{3}\right)$
iv. Now we may observe that coordinates of point P, Q are same. So, all these are representing same point on the plane i.e. centroid of the triangle.
20. Let D, E, F be the midpoint of the side $B C, C A$ and $A B$ respectively in $\triangle A B C$

Then, by the midpoint formula, we have
$D\left(\frac{2+0}{2}, \frac{1+3}{2}\right), E\left(\frac{0+0}{2}, \frac{3-1}{2}\right) F\left(\frac{0+2}{2}, \frac{-1+1}{2}\right)$
i.e., $D(1,2), E(0,1), F(1,0)$

Hence the lengths of medians AD, BE and CF are given by
$A D=\sqrt{(1-0)^{2}+(2+1)^{2}}=\sqrt{1+9}=\sqrt{10}$ units
$B E=\sqrt{(0-2)^{2}+(1-1)^{2}}=\sqrt{4+0}=\sqrt{4}=2$ units
$C F=\sqrt{(1-0)^{2}+(0-3)^{2}}=\sqrt{1+9}=\sqrt{10}$ units
Hence, $\mathrm{AD}=\sqrt{10}, \mathrm{BE}=2, \mathrm{CF}=\sqrt{10}$

