CBSE Test Paper 02

Chapter 6 Triangles

1. In the given figure if $B P\|C F, D P\| \mathrm{EF}$, then AD : DE is equal to (1)

a. 1:3.
b. 3:4.
c. $2: 3$.
d. 1:4.
2. In the given figure $P Q \| B C . \frac{A P}{P B}=4$, then the value of $\frac{A Q}{A C}$ is (1)

a. 5
b. $\frac{4}{5}$
c. 4
d. $\frac{5}{4}$
3. If $\Delta A B C \sim \Delta P Q R$ such that $\mathrm{AB}=9.1 \mathrm{~cm}$ and $\mathrm{PQ}=6.5 \mathrm{~cm}$. If the perimeter of $\triangle P Q R$ is 25 cm , then the perimeter of $\triangle A B C$ is (1)
a. 34 cm
b. 35 cm
c. 36 cm
d. 30 cm
4. Out of the given statements (1)
i. The areas of two similar triangles are in the ratio of the corresponding altitudes.
ii. If the areas of two similar triangles are equal, then the triangles are congruent.
iii. The ratio of areas of two similar triangles is equal to the ratio of their corresponding medians.
iv. The ratio of the areas of two similar triangles is equal to the ratio of their
corresponding sides.
The correct statement is
a. (iii)
b. (ii)
c. (i)
d. (iv)
5. If in two triangles $A B C$ and $D E F, \frac{A B}{D E}=\frac{B C}{F E}=\frac{C A}{F D}$, then (1)
a. $\triangle F D E \sim \Delta A B C$.
b. $\Delta B C A \sim \Delta F D E$.
c. $\triangle F D E \sim \Delta C A B$.
d. $\triangle C B A \sim \Delta F D E$.
6. In the fig PQ $\| \mathrm{BC}$ and $\mathrm{AP}: \mathrm{PB}=1: 2$. Find $\frac{\operatorname{ar}(\triangle A P Q)}{\operatorname{ar}(\triangle A B C)}$. (1)

7. If the altitude of two similar triangles are in the ratio $2: 3$, what is the ratio of their areas? (1)
8. In the figure of $\triangle A B C$, the points D and E are on the sides $C A, C B$ respectively such that $\mathrm{DE} \| \mathrm{AB}, \mathrm{AD}=2 \mathrm{x}, \mathrm{DC}=\mathrm{x}+3, \mathrm{BE}=2 \mathrm{x}-1$ and $\mathrm{CE}=\mathrm{x}$. Then, find x . (1)

9. In $\triangle A B C$ shown below, $\mathrm{DE} \| \mathrm{BC}$ If $\mathrm{BC}=8 \mathrm{~cm}, \mathrm{DE}=6 \mathrm{~cm}$ and area of $\triangle A D E=45 \mathrm{~cm}^{2}$, What is the area of $\triangle A B C$?
(1)

10. In $\triangle \mathrm{ABC}$, if X and Y are points on AB and AC respectively such that $\frac{A X}{X B}=\frac{3}{4}$, $\mathrm{AY}=5$ and $\mathrm{YC}=9$, then state whether XY and BC are parallel or not. (1)
11. In Fig. $\angle \mathrm{M}=\angle \mathrm{N}=46^{\circ}$. Express x in terms of a, b and c where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are lengths of LM , MN and NK respectively. (2)

12. In Fig. (i) and (ii), $P Q \| B C$. Find $Q C$ in (i) and $A Q$ in (ii). (2)

13. In figure, D and E are points on $A B$ and $A C$ respectively, such that $D E \| B C$. If $A D=$ $\frac{1}{3} \mathrm{BD}, \mathrm{AE}=4.5 \mathrm{~cm}$, find AC . (2)

14. In $\Delta A B C, D E \| B C$ If $\mathrm{AD}=\mathrm{x}+2, \mathrm{DB}=3 \mathrm{x}+16, \mathrm{AE}=\mathrm{x}$ and $\mathrm{EC}=3 \mathrm{x}+5$, then find x . (3)
15. Find $\angle P$ in the adjoining figure. (3)

16. In three line segments OA, OB, and OC , points $\mathrm{L}, \mathrm{M}, \mathrm{N}$ respectively are so chosen that
$L M \| A B$ and $M N \| B C$ but neither of $\mathrm{L}, \mathrm{M}, \mathrm{N}$ nor of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear. Show that $L N \| A C$. (3)
17. In the given figure, $D B \perp B C, D E \perp A B$ and $\mathrm{AC} \perp \mathrm{BC}$. Prove that $\frac{B E}{D E}=\frac{A C}{B C}$ (3)

18. For going to a city B from city A, there is a route via city C such that $A C \perp C B, A C=2 x$ km and $\mathrm{CB}=2(\mathrm{x}+7) \mathrm{km}$. It is proposed to construct a 26 km highway which directly connects the two cities A and B. Find how much distance will be saved in reaching city B from city A after the construction of the highway. (4)
19. In the given figure, $\mathrm{AP}=3 \mathrm{~cm}, \mathrm{AR}=4.5 \mathrm{~cm}, \mathrm{AQ}=6 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$ and $\mathrm{AC}=10 \mathrm{~cm}$, then find AD and the ratio of areas of $\triangle A R Q$ and $\triangle A D C$. (4)

20. In Fig. if $E F\|D C\| A B$. prove that $\frac{A E}{E D}=\frac{B F}{F C}$. (4)

CBSE Test Paper 02

Chapter 6 Triangles

Solution

1. a. 1:3.

Explanation: In $\triangle A F C, B P \| F C \Rightarrow \frac{A B}{B C}=\frac{A P}{P F}=\frac{1}{3}$
In $\triangle A F E, D P \| F E \Rightarrow \frac{A D}{D E}=\frac{A P}{P F}=\frac{1}{3}$
therefore $\mathrm{AD}: \mathrm{DE}=1: 3$
2. b. $\frac{4}{5}$

Explanation: Given: $\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{4}{1}$
Let $\mathrm{AP}=4 \mathrm{x}$ and $\mathrm{PB}=\mathrm{x}$, then $\mathrm{AB}=\mathrm{AP}+\mathrm{PB}=4 \mathrm{x}+\mathrm{x}=5 \mathrm{x}$
Since $P Q \| B C$, then
$\frac{\mathrm{AP}}{\mathrm{AB}}=\frac{\mathrm{AQ}}{\mathrm{AC}}$ [Using Thales theorem]
$\therefore \frac{\mathrm{AQ}}{\mathrm{AC}}=\frac{\mathrm{AP}}{\mathrm{AB}}=\frac{4 x}{5 x}=\frac{4}{5}$
3. b. 35 cm

Explanation:

$\frac{A B}{P Q}=\frac{7}{5}(c p s t)$ Therefore $B C=a \Longrightarrow Q R=\frac{5}{7} a, A C=b \Longrightarrow P R=\frac{5}{7}$
$6.5+\frac{5}{7} a+\frac{5}{7} b=25 \Longrightarrow a+b=25.9$
Therefore perimeter of $\triangle A B C=35$
4. b. (ii)

Explanation: If the areas of two similar triangles are equal, then the triangles are congruent
Option (i) is wrong since "The areas of two similar triangles are in the ratio of the square of the corresponding altitudes.
Like that options (iii) and (iv) are also wrong.
5. с. $\Delta F D E \sim \Delta C A B$.

Explanation: If in two triangles ABC and DEF, $\frac{A B}{D E}=\frac{B C}{F E}=\frac{C A}{F D}$, then $\Delta F D E \sim \Delta C A B$
because for similarity, all the corresponding sides should be in proportion.
6. In ABC ,

PQ || BC
$\therefore \quad \frac{\mathrm{AP}}{\mathrm{AB}}=\frac{\mathrm{AQ}}{\mathrm{AC}}$
Now in $\triangle A P Q$ and $\triangle A B C$,
$\frac{\mathrm{AP}}{\mathrm{AB}}=\frac{\mathrm{AQ}}{\mathrm{AC}}$ (As proved)
$\angle \mathrm{A}=\angle \mathrm{A}$ (common angle)
$\triangle \mathrm{APQ} \sim \triangle \mathrm{ABC}$ (SAS similarity)
Since for similar triangles, the ratio of the areas is the square of the ratio of their corresponding sides. Therefore,

$$
\frac{\operatorname{ar}(\Delta \mathrm{APQ})}{\operatorname{ar}(\Delta \mathrm{ABC})}=\frac{\mathrm{AP}^{2}}{\mathrm{AB}^{2}}=\frac{\mathrm{AP}^{2}}{(\mathrm{AP}+\mathrm{PB})^{2}}=\frac{1^{2}}{3^{2}}=\frac{1}{9}
$$

7. We know that the ratio of areas of two similar triangles is equal to the square of the ratio of corresponding altitude.
Ratio of their areas $=(\text { ratio of their altitudes })^{2}$
$=\left(\frac{2}{3}\right)^{2}=\frac{4}{9}$
$=4: 9$
8. $\mathrm{DE} \| \mathrm{AB}$

$\mathrm{AD}=2 \mathrm{x}, \mathrm{DC}=\mathrm{x}+3, \mathrm{BE}=2 \mathrm{x}-1$ and $\mathrm{CE}=\mathrm{x}$
By Basic proportionality theorem
$\frac{\mathrm{CD}}{A D}=\frac{C E}{B E}$
$\frac{x+3}{2 x}=\frac{x}{2 x-1}$
$(\mathrm{x}+3)(2 \mathrm{x}-1)=\mathrm{x}(2 \mathrm{x})$
$2 x^{2}-x+6 x-3=2 x^{2}$
$2 x^{2}+5 \mathrm{x}-3=2 \mathrm{x}^{2}$
$5 \mathrm{x}-3=0$
or, $5 \mathrm{x}=3$
$\mathrm{x}=\frac{3}{5}$
9. $\triangle A D E \sim \triangle A B C$

$\Rightarrow \frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle A B C)}=\left(\frac{D E}{B C}\right)^{2}$
$\Rightarrow \frac{45}{\operatorname{ar}(\triangle A B C)}=\left(\frac{6}{8}\right)^{2}$
$\Rightarrow \frac{45}{\operatorname{ar}(\triangle A B C)}=\frac{36}{64}$
$\Rightarrow \operatorname{ar}(\triangle A B C)=\frac{64(45)}{36}$
$\Rightarrow \operatorname{ar}(\triangle A B C)=80 \mathrm{~cm}^{2}$
10.

$\frac{A X}{X B}=\frac{3}{4} \ldots(i)$
$\frac{A Y}{C Y}=\frac{5}{9} \ldots(i i)$
From eqn (i) and (ii)
$\frac{A X}{X B} \neq \frac{A Y}{Y C}$
So XY and BC are not parallel
11. In $\triangle K P N$ and $\triangle K L M$, we have
$\angle \mathrm{KNP}=\angle \mathrm{KML}=46^{\circ}$ [Given]
\angle NKP $=\angle$ MKL [Common]
Thus, $\triangle \mathrm{KPN} \sim \triangle \mathrm{KLM}$ [by AA similarity criterion of triangles]
$\frac{\mathrm{KN}}{\mathrm{KM}}=\frac{\mathrm{NP}}{\mathrm{ML}}$ [because we know that corresponding sides of similar triangles are proportional]
$\frac{\mathrm{c}}{\mathrm{b}+\mathrm{c}}=\frac{\mathrm{x}}{\mathrm{a}}[\mathrm{KM}=\mathrm{MN}+\mathrm{NK}]$
$\Rightarrow x(b+c)=c a$
Therefore, $\mathrm{x}=\frac{\mathrm{ac}}{\mathrm{b}+\mathrm{c}}$
12. According to question

$P Q \| B C$
Therefore, by basic proportionality theorem, we have
$\frac{A P}{P B}=\frac{A Q}{Q C}$
$\Rightarrow \quad \frac{1.5}{3}=\frac{1.3}{Q C}$
$\Rightarrow \quad \frac{1}{2}=\frac{1.3}{Q C}$
$\Rightarrow \mathrm{QC}=2.6 \mathrm{~cm}$
In Fig. (ii)

it is given that $P Q \| B C$.
Therefore, by basic proportionality theorem, we have

$$
\begin{aligned}
& \frac{A P}{P B}=\frac{A Q}{Q C} \\
& \Rightarrow \quad \frac{3}{6}=\frac{A Q}{5.3} \\
& \Rightarrow \quad \frac{1}{2}=\frac{A Q}{5.3} \\
& \Rightarrow \quad A Q=\frac{5.3}{2}=2.65 \mathrm{~cm}
\end{aligned}
$$

Hence QC $=2.6 \mathrm{~cm}$ and $\mathrm{AQ}=2.65 \mathrm{~cm}$ respectively
13. According to question it is given that D and E are the points on sides $A B$ and $A C$ respectively
Also $\mathrm{AD}=\frac{1}{3} \mathrm{BD}$,
$\mathrm{AE}=4.5 \mathrm{~cm}, \mathrm{DE} \| \mathrm{BC}$
$\therefore \quad \frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
$\Rightarrow \quad \frac{\frac{1}{3} \mathrm{BD}}{\mathrm{BD}}=\frac{4.5}{\mathrm{EC}}$
$\Rightarrow \quad \frac{1}{3}=\frac{4.5}{\mathrm{EC}}$
$\Rightarrow \quad \mathrm{EC}=4.5 \times 3 \mathrm{~cm}$
$\Rightarrow \mathrm{EC}=13.5 \mathrm{~cm}$
Now, $\mathrm{AC}=\mathrm{AE}+\mathrm{EC}=4.5+13.5=18 \mathrm{~cm}$
14.

$\therefore D E \| B C$
$\frac{A D}{D B}=\frac{A E}{E C}$ (by BPT)
or, $\frac{x+2}{3 x+16}=\frac{x}{3 x+5}$
On cross multiplication we get
$(x+2)(3 x+5)=x(3 x+16)$
$3 x^{2}+5 x+6 x+10=3 x^{2}+16 x$
$5 x=10$
$\mathrm{x}=2$
15. In $\triangle A B C$ and $\angle Q R P$, we have
$\frac{A B}{Q R}=\frac{3.6}{7.2}=\frac{1}{2}$,
$\frac{B C}{R P}=\frac{6}{12}=\frac{1}{2}$
and $\frac{C A}{P Q}=\frac{3 \sqrt{3}}{6 \sqrt{3}}=\frac{1}{2}$
Thus, $\frac{A B}{Q R}=\frac{B C}{R P}=\frac{C A}{P Q}$ and so
$\triangle A B C \sim \triangle Q R P$ [by SSS-similarly].
$\therefore \quad \angle C=\angle P$ [corresponding angles of similar triangles].
But, $\angle C=180^{\circ}-(\angle A+\angle B)$
$=180^{\circ}-\left(70^{\circ}+60^{\circ}\right)=50^{\circ}$
$\therefore \quad \angle P=50^{\circ}$.
16. We have,

LM || AB and MN || BC

Therefore, by basic proportionality theorem,
We have,
$\frac{O L}{A L}=\frac{O M}{M B}$
And, $\frac{O N}{N C}=\frac{O M}{M B}$
Compare equation (i) and equation (ii), we get
$\frac{O L}{A L}=\frac{O N}{N C}$
Thus, LN divides sides OA and $\mathrm{OC} \triangle \mathrm{OAC}$ in the same ratio.
Therefore, by the converse of basic proportionality theorem, we have,
LN | | AC.
17. Given:
$D B \perp B C, D E \perp A B$ and $A C \perp B C$

B
C
To prove:
$\frac{B E}{D E}=\frac{A C}{B C}$

Proof: As per the figure
$\angle 1+\angle 2=90^{\circ}$
$\angle 2+\angle 3=90^{\circ}$
So $\angle 1=\angle 3$
$\triangle A B C$ and $\triangle B D E$
$\angle A C B=\angle D E B=90^{\circ}$
$\angle 1=\angle 3$
Hence $\triangle A C B \sim \triangle D E B$
Hence $\frac{B E}{D E}=\frac{A C}{B C}$
18. A.T.Q.

Let $\mathrm{AC}=2 \mathrm{xkm}$
$\mathrm{CB}=2(\mathrm{x}+7) \mathrm{km}$

In right-angled $\triangle \mathrm{ACB}, \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{CB}^{2}$
Highway is $A B=26 \mathrm{~km}$
$(26)^{2}=(2 x)^{2}+(2(x+7))^{2}$
$\Rightarrow 676=4 \mathrm{x}^{2}+4(\mathrm{x}+7)^{2}$
$\Rightarrow \quad \frac{676}{4}=\mathrm{x}^{2}+\mathrm{x}^{2}+49+14 \mathrm{x}$
$\Rightarrow 169=2 \mathrm{x}^{2}+14 \mathrm{x}+49$
$\Rightarrow 2 \mathrm{x}^{2}+14 \mathrm{x}+49-169=0$
$\Rightarrow 2 \mathrm{x}^{2}+14 \mathrm{x}-120=0$
$\Rightarrow \mathrm{x}^{2}+7 \mathrm{x}-60=0$
$\Rightarrow \mathrm{x}^{2}+12 \mathrm{x}-5 \mathrm{x}-60=0$
$\Rightarrow \mathrm{x}(\mathrm{x}+12)-5(\mathrm{x}+12)=0$
$\Rightarrow(\mathrm{x}-5)(\mathrm{x}+12)=0$
$\Rightarrow \mathrm{x}=-12,5$
So, $\mathrm{AC}=2 \mathrm{x}=2(5)=10 \mathrm{~km}$
$B C=2(x+7)=2(5+7)=24 \mathrm{~km}$

Total distance for A to B via C = $10+24=34 \mathrm{~km}$
A to B via highway $=26 \mathrm{~km}$
Distance saved $=34-26=8 \mathrm{~km}$.
19. Given, $\mathrm{AP}=3 \mathrm{~cm}, \mathrm{AR}=4.5 \mathrm{~cm}, \mathrm{AQ}=6 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$ and $\mathrm{AC}=10 \mathrm{~cm}$

Here, $\frac{A P}{A B}=\frac{3}{5}$ and $\frac{A Q}{A C}=\frac{6}{10}=\frac{3}{5}$
$\Rightarrow \frac{A P}{A B}=\frac{A Q}{A C}$
Thus, $P Q \| B C$ [by converse of basic proportionality theorem]
In $\triangle A R Q$ and $\triangle A D C$
$\angle R A Q=\angle D A C$ [common angle]
$\angle A R Q=\angle A D C$ [corresponding angles]
$\angle R Q A=\angle D C A$ [corresponding angles]
So, $\triangle A R Q \sim \triangle A D C$ [By AAA similarity criterion]
$\Rightarrow \frac{A R}{A D}=\frac{A Q}{A C}$ [Since, corresponding sides of similar triangles are proportional]
$\Rightarrow \frac{4.5}{A D}=\frac{6}{10}$
$\Rightarrow A D=\frac{45}{6}$
$\Rightarrow A D=\frac{15}{2}=7.5 \mathrm{~cm}$
Now, $\frac{\operatorname{ar}(\triangle A R Q)}{\operatorname{ar}(\triangle A D C)}=\left(\frac{A Q}{A C}\right)^{2}$ [By theorem of area of similar triangles]
$\frac{\operatorname{ar}(\triangle A R Q)}{\operatorname{ar}(\triangle A D C)}=\left(\frac{6}{10}\right)^{2}$
$\frac{\operatorname{ar}(\triangle A R Q)}{\operatorname{ar}(\triangle A D C)}=\frac{36}{100}$
$\frac{\operatorname{ar}(\triangle A R Q)}{\operatorname{ar}(\triangle A D C)}=\frac{9}{25}$
So, $\mathrm{AD}=7.5 \mathrm{~cm}$ and $\frac{\operatorname{ar}(\triangle A R Q)}{\operatorname{ar}(\triangle A D C)}=\frac{9}{25}$.
20. Given: According to the question, We have, $E F\|D C\| A B$ in the given figure.

To prove: $\frac{A E}{E D}=\frac{B F}{F C}$

Construction: Produce DA and CB to meet at P(say).
Proof: In \triangle PEF, we have
$A B \| E F$
$\therefore \quad \frac{P A}{A E}=\frac{P B}{B F}$ [By Basic proportionality theorm]
$\Rightarrow \quad \frac{P A}{A E}+1=\frac{P B}{B F}+1$ [Adding 1 on both sides]
$\Rightarrow \quad \frac{A E}{A E}=\frac{P B+B F}{B F}$
$\Rightarrow \quad \frac{P E}{A E}=\frac{P F}{B F}$
In $\triangle \mathrm{PDC}$, we have,
$E F \| D C$
$\therefore \quad \frac{P E}{E D}=\frac{P F}{F C}$ [By Basic Proportionality Theorem]
Therefore, on dividing equation (i) by equation (ii), we get
$\frac{\frac{P E}{A E}}{\frac{P E}{E D}}=\frac{\frac{P F}{B F}}{\frac{P F}{F C}}$
$\Rightarrow \quad \frac{E D}{A E}=\frac{F C}{B F}$
$\Rightarrow \quad \frac{A E}{E D}=\frac{B F}{F C}$

