CBSE Test Paper 01
 Chapter 6 Triangles

1. In an isosceles triangle ABC if $\mathrm{AC}=\mathrm{BC}$ and $\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$ then the measure of $\angle C$ is (1)
a. 90°
b. 45°
c. 60°
d. 30^{0}
2. In the given figure $\mathrm{XY} \| \mathrm{BC}$. If $\mathrm{AX}=3 \mathrm{~cm}, \mathrm{XB}=1.5 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$, then XY is equal to (1)

a. 6 cm .
b. 4.5 cm
c. 3 cm .
d. 4 cm .
3. What will be the length of the hypotenuse of an isosceles right triangle whose one side is $4 \sqrt{2} \mathrm{~cm}$ (1)
a. $12 \sqrt{2} \mathrm{~cm}$.
b. 12 cm .
c. 8 cm .
d. $8 \sqrt{2} \mathrm{~cm}$.
4. In the given figure, if $\frac{\operatorname{ar}(\Delta A L M)}{\operatorname{ar}(\operatorname{trapezium} L M C B)}=\frac{9}{16}$, and $\mathrm{LM}|\mid \mathrm{BC}$, Then AL:LB is equal to
(1)

a. $3: 5$
b. $4: 1$
c. $3: 4$
d. $2: 3$
5. In the follwoing figure $\mathrm{AD}: \mathrm{DB}=1: 3, \mathrm{AE}: \mathrm{EC}=1: 3$ and $\mathrm{BF}: \mathrm{FC}=1: 4$, then (1)

a. $A D \| F C$.
b. $A D \| F E$.
c. $D E \| B C$.
d. $A E \| D F$.
6. In the given figure, $\mathrm{ST} \| \mathrm{RQ}, \mathrm{PS}=3 \mathrm{~cm}$ and $\mathrm{SR}=4 \mathrm{~cm}$. Find the ratio of the area of $\triangle \mathrm{PST}$ to the area of $\triangle \mathrm{PRQ}$. (1)

7. If D and E are points on the sides AB and AC respectively of $\triangle A B C$ such that $\mathrm{AB}=$ $5.6 \mathrm{~cm}, \mathrm{AD}=1.4 \mathrm{~cm}, \mathrm{AC}=7.2 \mathrm{~cm}$ and $\mathrm{AE}=1.8 \mathrm{~cm}$, show that $\mathrm{DE} \| \mathrm{BC}$. (1)

8. A ladder is placed in such a way that its foot is at a distance of 5 m from a wall and its tip reaches a window 12 m above the ground. Determine the length of the ladder. (1)
9. Triangles ABC and DEF are similar. If $\mathrm{AC}=19 \mathrm{~cm}$ and $\mathrm{DF}=8 \mathrm{~cm}$, find the ratio of the area of two triangles. (1)
10. In the given figure, $\mathrm{DE} \| \mathrm{BC}$.

Find AD. (1)
11. In $\triangle A B C, X$ is any point on $A C$. If Y, Z, U and V are the middle points on $A X, X C, A B$ and $B C$ respectively, then prove that $U Y|\mid V Z$ and $U V| \mid Y Z$.

12. If the angles of one triangle are respectively equal to the angles of another triangle, Prove that the ratio of their corresponding sides is the same as the ratio of their corresponding angle bisectors. (2)
13. In a $\triangle A B C, D$ and E are points on the sides $A B$ and $A C$ respectively such that $D E \| B C$. If $\mathrm{AD}=\mathrm{x}, \mathrm{DB}=\mathrm{x}-2, \mathrm{AE}=\mathrm{x}+2$ and $\mathrm{EC}=\mathrm{x}-1$, find the value of x . (2)
14. A man goes 10 m due south and then 24 m due west. How far is he from the starting point? (3)
15. In the given figure A, B and C are points on $O P, O Q$ and $O R$ respectively such that $A B \|$ PQ and AC \| PR. Prove that BC \| QR.

16. In a $\triangle \mathrm{ABC}, \mathrm{D}$ and E are points on the sides AB and AC respectively such that $D E \| B C$. If $\mathrm{AD}=8 \mathrm{x}-7, \mathrm{DB}=5 \mathrm{x}-3, \mathrm{AE}=4 \mathrm{x}-3$ and $\mathrm{EC}=(3 \mathrm{x}-1)$, find the value of x . (3)
17. In Fig. find \angle F. (3)

18. Prove that ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides. (4)
19. In a trapezium $\mathrm{ABCD}, \mathrm{AB}| | \mathrm{DC}$ and $\mathrm{DC}=2 \mathrm{AB}$. $\mathrm{EF}|\mid \mathrm{AB}$, where E and F lie on $B C$ and AD respectively such that $\frac{B E}{E C}=\frac{4}{3}$. Diagonal DB intersects EF at G. Prove that, $7 \mathrm{EF}=$ 11 AB . (4)
20. In a triangle, if the square of one side is equal to the sum of the squares on the other two sides. Prove that the angle opposite to the first side is a right angle. Use the above theorem to find the measure of $\angle \mathrm{PKR}$ in the figure given below. (4)

CBSE Test Paper 01
 Chapter 6 Triangles

Solution

1. a. 90°

Explanation: Given: $A B^{2}=2 A C^{2}$
$\Rightarrow A B^{2}=A C^{2}+A C^{2}$
$\Rightarrow A B^{2}=A C^{2}+B C^{2}$ [Given: $\left.\mathrm{AC}=\mathrm{BC}\right] . \Delta \mathrm{ABC}$ is a right angled triangle, by converse of Pythagoras theorem
Now, since $\Delta \mathrm{ABC}$ is an isosceles triangle also.
Therefore, its two sides are equal i.e., $\mathrm{AC}=\mathrm{BC}$ Therefore, AB is hypotenuse.
$\therefore \angle \mathrm{C}$ is a right angle i.e., 90°
2. d. 4 cm .

Explanation: Since $X Y \| B C$, then using Thales theorem,
$\Rightarrow \frac{\mathrm{AX}}{\mathrm{AB}}=\frac{\mathrm{XY}}{\mathrm{BC}}$
$\Rightarrow \frac{3}{4.5}=\frac{\mathrm{XY}}{6}$
$\Rightarrow \mathrm{XY}=4 \mathrm{~cm}$
3. c. 8 cm .

Explanation: Let AC be hypotenuse. Its equal sides are AB and BC and $\mathrm{AB}=\mathrm{BC}$
$=4 \sqrt{2} \mathrm{~cm}$.

Using Pythagoras Theorem,
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$\Rightarrow A C^{2}=(4 \sqrt{2})^{2}+(4 \sqrt{2})^{2}=32+32=64 \mathrm{~cm}^{2}$
$\Rightarrow \mathrm{AC}=8 \mathrm{~cm}$

4. b. $4: 1$

Explanation: In $\triangle \mathrm{ALM}$ and $\triangle \mathrm{ABC}, \angle \mathrm{A}=\angle \mathrm{A}$ [Common]
$\angle \mathrm{ALM}=\angle \mathrm{ABC}$ [Corresponding angles as $\mathrm{LM} \| \mathrm{BC}$]
$\therefore \Delta \mathrm{ALM} \sim \Delta \mathrm{ABC}$ [AA similarity]
$\therefore \frac{\operatorname{ar}(\Delta \mathrm{ALM})}{\operatorname{ar}(\Delta \mathrm{ABC})}=\frac{\mathrm{AL}^{2}}{\mathrm{AB}^{2}}$ Now, $\frac{\operatorname{ar}(\text { trap.LMCB })}{\operatorname{ar}(\Delta \mathrm{ALM})}=\frac{9}{16}$
$\Rightarrow \frac{\operatorname{ar}(\Delta \mathrm{ABC})-\operatorname{ar}(\Delta \mathrm{ALM})}{\operatorname{ar}(\Delta \mathrm{ALM})}=\frac{9}{16}$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{ALM})}-1=\frac{9}{16}$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{ALM})}=\frac{9}{16}+1$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{ALM})}=\frac{25}{16}$
$\Rightarrow \frac{\mathrm{AB}^{2}}{\mathrm{AL}^{2}}=\frac{25}{16}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{AL}}=\frac{5}{4}$
Let $\mathrm{AB}=5 \mathrm{x}$ and $\mathrm{AL}=4 \mathrm{x}$ then $\mathrm{LB}=\mathrm{AB}-\mathrm{AL}=5 \mathrm{x}-4 \mathrm{x}=1 \mathrm{x}$
$\therefore \frac{\mathrm{AL}}{\mathrm{LB}}=\frac{4 x}{1 x}=\frac{4}{1}$
$\Rightarrow \mathrm{AL}: \mathrm{LB}=4: 1$
5.
c. $D E \| B C$.

Explanation: Given: $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{1}{3}$ and $\frac{\mathrm{AE}}{\mathrm{EC}}=\frac{1}{3}$
Therefore, in $\triangle \mathrm{ABC}, \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
$\therefore \mathrm{DE} \| \mathrm{BC}$ [Using Thales Theorem]
Here we are not considering BF : FC=1:4.
6. $\mathrm{PS}=3 \mathrm{~cm}, \mathrm{SR}=4 \mathrm{~cm}$ and $\mathrm{ST} \| \mathrm{RQ}$.

$P R=P S+S R$
$=3+4=7 \mathrm{~cm}$
In $\triangle \mathrm{PST}$ and $\triangle \mathrm{PRQ}$
$\angle \mathrm{SPT} \cong \angle \mathrm{RPQ}$ (common angle)
$\angle \mathrm{PST} \cong \angle \mathrm{PRQ}$ (Alternate angle)
$\triangle \mathrm{PST} \sim \triangle \mathrm{PRQ}$ (AA configuration)
$\frac{\text { ar } \triangle P S T}{\text { ar } \triangle P Q R}=\frac{P S^{2}}{P R^{2}}=\frac{3^{2}}{7^{2}}=\frac{9}{49}$
Hence required ratio $=9: 49$.
7. Given: $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{AD}=1.4 \mathrm{~cm}, \mathrm{AC}=7.2 \mathrm{~cm}$ and $\mathrm{AE}=1.8 \mathrm{~cm}$
$\therefore \quad \frac{A D}{A B}=\frac{1.4}{5.6}=\frac{1}{4}$ and $\frac{A E}{A C}=\frac{1.8}{7.2}=\frac{1}{4}$
$\Rightarrow \quad \frac{A D}{A B}=\frac{A E}{A C}$
Hence, by the converse of Thales' theorem, $D E \| B C$.
8. Let AC be the ladder, AB be the wall and BC be the distance of ladder from the foot of the wall.
In right $\triangle \mathrm{ABC}$,

$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$ \{ using Pythagoras theorm for right-angled triangle $\}$
$\Rightarrow \mathrm{AC}^{2}=(12)^{2}+5^{2}$
$\Rightarrow \mathrm{AC}^{2}=144+25$
$\Rightarrow A C=13 \mathrm{~m}$
9. We have,
$\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$
$\mathrm{AC}=19 \mathrm{~cm}$ and $\mathrm{DF}=8 \mathrm{~cm}$
By area of similar triangle theorem
$\frac{\operatorname{Area}(\triangle A B C)}{\operatorname{Area}(\triangle D E F)}=\frac{A C^{2}}{D F^{2}}=\frac{(19)^{2}}{8^{2}}=\frac{361}{64}$
10. $\because \mathrm{DE} \| \mathrm{BC}$
$\therefore \quad \frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AE}}{\mathrm{CE}}$ (from BPT)
$\Rightarrow \quad \frac{\mathrm{AD}}{7.2}=\frac{1.8}{5.4} \Rightarrow \mathrm{AD}=2.4 \mathrm{~cm}$
11. Join BX

In $A B X, U$ is midpoint of $A B$ and Y is mid-point $A X$ (given)
\therefore UY \| BX (using mid-point theorem)(i)

In BCX, v is mid-point of BC and z is mid-point of XC
VZ \| BX ..(ii)
from (i) and (ii)
UY || VZ
In $A B C, U$ is mid-point of $A B$ and V is mid-point of $B E$.
$\therefore \mathrm{UV} \| \mathrm{AC}$
\Rightarrow UV || YZ Hence proved.
12.

Given: Two triangles ABC and DEF in which $\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}$ and $\angle \mathrm{C}=\angle \mathrm{F}, \mathrm{AL}$ and
DM are angle bisectors of $\angle \mathrm{A}$
and $\angle \mathrm{D}$ respectively
To prove: $\frac{B C}{E F}=\frac{A L}{D M}$
Proof: Triangle ABC and DEF are Similar.
$\Rightarrow \frac{A B}{D E}=\frac{B C}{E F}$
In $\triangle \mathrm{ABL}$ and $\triangle \mathrm{DEM}$, we have
$\angle \mathrm{B}=\angle \mathrm{E}$ [Given]
$\angle \mathrm{BAL}=\angle \mathrm{EDM}\left[\because \angle \mathrm{A}=\angle \mathrm{D} \Rightarrow \frac{1}{2} \angle A=\frac{1}{2} \angle \mathrm{D}\right]$
$\Rightarrow \triangle \mathrm{ABL} \sim \triangle$ DEM [AA similarity]
$\Rightarrow \frac{A B}{D E}=\frac{A L}{D M}$
From (i) and (ii) we have
$\frac{B C}{E F}=\frac{A L}{D M}$
13. We have,

DE || BC
Therefore, by basic proportionality theorem,
We have,
$\frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{x}{x-2}=\frac{x+2}{x-1}$
$\Rightarrow \mathrm{x}(\mathrm{x}-1)=(\mathrm{x}+2)(\mathrm{x}-2)$
$\Rightarrow \mathrm{x}^{2}-\mathrm{x}=\mathrm{x}^{2}-(2)^{2}\left[\because(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})=\mathrm{a}^{2}-\mathrm{b}^{2}\right]$
$\Rightarrow-\mathrm{x}=-4$
$\Rightarrow \mathrm{x}=4 \mathrm{~cm}$.
14. Starting from O, let the man goes from O to A and then A to B as shown in the figure. Then,
$\mathrm{OA}=10 \mathrm{~m}, \mathrm{AB}=24 \mathrm{~m}$ and $\angle \mathrm{OAB}=90^{\circ}$

Using Pythagoras theorem:
$\mathrm{OB}^{2}=\mathrm{OA}^{2}+\mathrm{AB}^{2}$
$\Rightarrow \mathrm{OB}^{2}=10^{2}+24^{2}$
$\Rightarrow \mathrm{OB}^{2}=100+576$
$\Rightarrow \mathrm{OB}^{2}=676$
$\Rightarrow \mathrm{OB}=\sqrt{676}=26 \mathrm{~m}$
Hence, the man is 26 m south-west from the starting position.
15. Proof: In $\triangle P O Q, A B \| P Q$,(Given)
$\frac{A O}{A P}=\frac{O B}{B Q} \ldots \ldots$ (i) (BPT)
In \triangle OPR $A C \| P R$
$\frac{O A}{A P}=\frac{O C}{C R}$.
From eqn (I) and (ii)
$\frac{O B}{B Q}=\frac{O C}{C R}$
Hence $B C \| Q R$ (By converse of BPT)
16. We have,

We are given that, $\mathrm{DE} \| \mathrm{BC}$
Therefore, by thales theorem,
We have,
$\frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{8 x-7}{5 x-3}=\frac{4 x-3}{3 x-1}$
$\Rightarrow(8 \mathrm{x}-7)(3 \mathrm{x}-1)=(4 \mathrm{x}-3)(5 \mathrm{x}-3)$
$\Rightarrow 24 x^{2}-8 \mathrm{x}-21 \mathrm{x}+7=20 \mathrm{x}^{2}-12 \mathrm{x}-15 \mathrm{x}+9$
$\Rightarrow 24 \mathrm{x}^{2}-20 \mathrm{x}^{2}-29 \mathrm{x}+27 \mathrm{x}+7-9=0$
$\Rightarrow 4 \mathrm{x}^{2}-2 \mathrm{x}-2=0$
$\Rightarrow 2\left[2 \mathrm{x}^{2}-\mathrm{x}-1\right]=0$
$\Rightarrow 2 \mathrm{x}^{2}-\mathrm{x}-1=0$
$\Rightarrow 2 \mathrm{x}^{2}-2 \mathrm{x}+1 \mathrm{x}-1=0$
$\Rightarrow 2 \mathrm{x}(\mathrm{x}-1)+1(\mathrm{x}-1)=0$
$\Rightarrow(2 \mathrm{x}+1)(\mathrm{x}-1)=0$
$\Rightarrow 2 \mathrm{x}+1=0$ or $\mathrm{x}-1=0$
$\Rightarrow x=-\frac{1}{2}$ or $\mathrm{x}=1$
$x=-\frac{1}{2}$ is not possible.
$\therefore \mathrm{x}=1$.
17. In triangles ABC and DEF , we have
$\frac{A B}{D F}=\frac{B C}{F E}=\frac{C A}{E D}=\frac{1}{2}$
Therefore, by SSS-criterion of similarity, we have
$\Delta A B C \sim \Delta D F E$
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{F}$ and $\angle \mathrm{C}=\angle \mathrm{E}$
$\Rightarrow \angle \mathrm{D}=80^{\circ}, \angle \mathrm{F}=60^{\circ}$
Hence, $\angle \mathrm{F}=60^{\circ}$.
18. Given : $\triangle A B C \sim \Delta P Q R$

To Prove : $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\left(\frac{A B}{P Q}\right)^{2}=\left(\frac{B C}{Q R}\right)^{2}=\left(\frac{A C}{P R}\right)^{2}$
Construction: Draw $\mathrm{AD} \perp \mathrm{BC}$ and $\mathrm{PE} \perp \mathrm{QR}$
Proof:

$\triangle A B C \sim \triangle P Q R$
$\therefore \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}$ (Ratio of corresponding sides of similar triangles are equal) ...(i)
$\angle B=\angle Q$ (Corresponding angles of similar triangles).
In $\triangle A D B$ and $\triangle P E Q$
$\angle B=\angle Q$ (From (ii))
$\angle A D B=\angle P E Q\left[\right.$ each $\left.90^{\circ}\right]$
$\therefore \triangle A D B \sim \triangle P E Q$ [By AA criteria]
$\Rightarrow \frac{A D}{P E}=\frac{A B}{P Q}$ (Corresponding sides of similar triangles) ...(iii)
From equation (i) and equation (iii)
$\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}=\frac{A D}{P E} \ldots$ (iv)
$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{\frac{1}{2} \times B C \times A D}{\frac{1}{2} \times Q R \times P E}$
$=\left(\frac{B C}{Q R}\right) \times\left(\frac{A D}{P E}\right)$
$\left(\frac{A D}{P E}=\frac{B C}{Q R}\right)$
$=\frac{B C}{Q R} \times \frac{B C}{Q R}$
$\Rightarrow \frac{a r(\triangle A B C)}{a r(\Delta P Q R)}=\frac{B C^{2}}{Q R^{2}} . .$. (v) [from eq. (iv)]
From equation (iv) and equation (v),
$\therefore \frac{\operatorname{ar}(\Delta A B C)}{\operatorname{ar}(\triangle P Q R)}=\left(\frac{A B}{P Q}\right)^{2}=\left(\frac{B C}{Q R}\right)^{2}=\left(\frac{A C}{P R}\right)^{2}$
\therefore Ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
19.

In a trapezium $A B C D, A B\|D C, E F\| A B$ and $C D=2 A B$
and also $\frac{B E}{E C}=\frac{4}{3}$
$\mathrm{AB}|\mid \mathrm{CD}$ and AB$| \mid \mathrm{EF}$
$\therefore \frac{A F}{F D}=\frac{B E}{E C}=\frac{4}{3}$
In $\triangle B G E$ and $\triangle B D C$
$\angle B E G=\angle B C D$ (\because corresponding angles)
$\angle G B E=\angle D B C$ (Common)
$\therefore \Delta B G E \sim \Delta B D C$ [By AA similarity]
$\Rightarrow \frac{E G}{C D}=\frac{B E}{B C}$
Now, from (1) $\frac{B E}{E C}=\frac{4}{3}$
$\Rightarrow \frac{E C}{B E}=\frac{3}{4}$
$\Rightarrow \frac{E C}{B E}+1=\frac{3}{4}+1$
$\Rightarrow \frac{E C+B E}{B E}=\frac{7}{4}$
$\Rightarrow \frac{B C}{B E}=\frac{7}{4}$ or $\frac{B E}{B C}=\frac{4}{7}$
from equation (2), $\frac{E G}{C D}=\frac{4}{7}$
So $E G=\frac{4}{7} C D$......(3)
Similarly, $\triangle D G F \sim \triangle D B A$ (by AA similarity)
$\Rightarrow \frac{D F}{D A}=\frac{F G}{A B}$
$\Rightarrow \frac{F G}{A B}=\frac{3}{7}$
$\Rightarrow F G=\frac{3}{7} A B$
$\left[\begin{array}{l}\because \frac{A F}{A D}=\frac{4}{7}=\frac{B E}{B C} \\ \Rightarrow \frac{E C}{B C}=\frac{3}{7}=\frac{D E}{D A}\end{array}\right]$
Adding equations (3) and (4),we get,
$E G+F G=\frac{4}{7} C D+\frac{3}{7} A B$
$\Rightarrow E F=\frac{4}{7} \times(2 A B)+\frac{3}{7} A B$
$=\frac{8}{7} A B+\frac{3}{7} A B=\frac{11}{7} A B$
$\therefore \quad 7 E F=11 A B$
20.

i. Given: In $\triangle \mathrm{ABC}$ such that
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
To prove: Triangle ABC is right angled at B
Construction: Construct a triangle DEF such that
$\mathrm{DE}=\mathrm{AB}, \mathrm{EF}=\mathrm{BC}$ and $\angle E=90^{\circ}$
Proof: $\because \triangle$ DEF is a right angled triangle right angled at E [construction]
\therefore By Pythagoras theorem, we have
$\mathrm{DF}^{2}=\mathrm{DE}^{2}+\mathrm{EF}^{2}$
$\Rightarrow \mathrm{DF}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}[\because \mathrm{DE}=\mathrm{AB}$ and $\mathrm{EF}=\mathrm{BC}]$
$\Rightarrow \mathrm{DF}^{2}=\mathrm{AC}^{2}\left[\because \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}\right]$
$\Rightarrow \mathrm{DF}=\mathrm{AC}$
Thus, in $\triangle A B C$ and $\triangle D E F$, we have
$\mathrm{AB}=\mathrm{DE}$
$B C=E F$
and $\mathrm{AC}=\mathrm{DF}$ [By Construction and (i)]
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ (SSS)
$\Rightarrow \angle \mathrm{B}=\angle \mathrm{E}=90^{\circ}$
Hence, $\triangle \mathrm{ABC}$ is a right triangle.
ii. In $\triangle \mathrm{QPR}, \angle \mathrm{QPR}=90^{\circ}$
$\Rightarrow 24^{2}+\mathrm{x}^{2}=26^{2}$
$\Rightarrow \mathrm{x}=10$
$\Rightarrow \mathrm{PR}=10 \mathrm{~cm}$
Now in $\triangle \mathrm{PKR}, \mathrm{PR}^{2}=\mathrm{PK}^{2}+\mathrm{KR}^{2}$ [as $10^{2}=8^{2}+6^{2}$]
$\therefore \mathrm{PKR}$ is right angled at K
$\Rightarrow \angle \mathrm{PKR}=90^{\circ}$

