CBSE Test Paper 01

Chapter 05 Arithmetic Progression

1.	In an AP, if a = 4, n = 7 and a_n = 4, then the value of 'd' is (1)
	a. 0
	b. 1
	c. 3
	d. 2
2.	The next two terms of the AP: k , $2k + 1$, $3k + 2$, $4k + 3$, are (1)
	a. 5k + 4 and 6k + 5
	b. 4k + 4 and 4k + 5
	c. 5k + 5 and 6k + 6
	d. 5k and 6k
3.	The common difference of the A.P. can be (1)
	a. only negative
	b. only zero
	c. positive, negative or zero
	d. only positive
4.	The 7th term from the end of the A.P. -11 , -8 , -5 ,, 49 is (1)
	a. 28
	b. 31
	c11
	d8
5.	The common difference of the A.P whose $a_n=-3n+7$ is (1)
	a. 3
	b. 1
	c3
	d. 2
6.	If 5 times the 5 th term of an AP is equal to 10 times the 10 th term, show that its 15 th
	term is zero. (1)

7. Write the first term a and the common difference d of A.P. -1.1, -3.1, -5.1, -7.1,... (1)

- 8. For what value of n are the n^{th} term of the following two AP's are same 13, 19, 25, and 69, 68, 67 (1)
- 9. Find k, if the given value of x is the kth term of the given AP $5\frac{1}{2}$, 11, $16\frac{1}{2}$, 22, ..., x = 550. **(1)**
- 10. Find the 6th term from the end of the A.P. 17,14,11,..., 40 **(1)**
- 11. How many terms of the AP 17,15,13,11,... must be added to get the sum 72? (2)
- 12. Find n. Given a = first term = -18.9, d = common difference = 2.5, a_n = the nth term = 3.6, n = ? (2)
- 13. Find the number of terms in each of the following APs. 18, $15\frac{1}{2}$, 13,, –47. (2)
- 14. The first and the last terms of an AP are 5 and 45 respectively. If the sum of all its terms is 400, find the common difference and the number of terms. (3)
- 15. The 14th term of an A.P. is twice its 8th term. If the 6th term is -8, then find the sum of its first 20 terms. (3)
- 16. Find the 6th term from end of the AP 17, 14, 11, ..., -40. **(3)**
- 17. The houses of a row in a colony are numbered consecutively from 1 to 49. Show that there is a value of x such that the sum of the numbers of the houses preceding the house numbered x is equal to the sum of the numbers of the houses following it. Find the value of x. (3)
- 18. The sum of first n terms of an A.P. is $3n^2 + 4n$. Find the 25^{th} term of this A.P. (4)
- 19. If sum of first 6 terms of an A.P. is 36 and that of the first 16 terms is 256, find the sum of the first 10 terms. **(4)**
- 20. The sum of the third and the seventh terms of an AP is 6 and their product is 8. Find the sum of the first sixteen terms of the AP. (4)

CBSE Test Paper 01

Chapter 05 Arithmetic Progression

Answers

1. a. 0

Explanation: Given: a = 4, n = 7 and $a_n = 4$, then

$$a_n = a + (n-1) d$$

$$\Rightarrow$$
4 = 4 + (7 - 1) d

$$\Rightarrow$$
4 - 4 = 6d

$$\Rightarrow 6d = 0$$

$$\Rightarrow d = 0$$

2. a. 5k + 4 and 6k + 5

Explanation: Given: k, 2k + 1, 3k + 2, 4k + 3, ...

Here
$$d = 2k + 1 - k = k + 1$$

Therefore, the next two terms are

$$4k+3+k+1=5k+4$$
 and $5k+4+k+1=6k+5$

3. c. positive, negative or zero

Explanation: The common difference of the A.P. can be positive, e.g. 1, 2, 3, 4 d is +ve and series is increasing negative e.g 4, 3, 2, 1 d is - ve and series is decreasing

or zero also and the AP becomes constant e.g 4, 4, 4, 4

4. b. 31

Explanation: Reversing the given A.P., we have

$$49,46,43,\ldots\ldots,-11$$

Here,
$$a=49, d=46-49=-3$$
 and $n=7$

$$\therefore a_n = a + (n-1)d$$

$$\Rightarrow a_7 = 49 + (7 - 1) \times (-3)$$

$$=49+6\times(-3)$$

$$\Rightarrow a_7 = 49 - 18 = 31$$

5. c. -3

Explanation: Given: $a_n = -3n + 7$

Putting n=1,2,3 , we get

$$a = -3 \times 1 + 7 = -3 + 7 = 4$$

$$a_2 = -3 \times 2 + 7 = -6 + 7 = 1$$

$$a_3 = -3 \times 3 + 7 = -9 + 7 = -2$$

 \therefore Common difference $(d)=a_2-a=1-4=-3$

6. Let 1^{st} term = a and common difference = d.

$$a_5 = a + 4d$$
, $a_{10} = a + 9d$

According to the question, 5 \times a₅ = 10 \times a₁₀ \Rightarrow 5(a + 4d) = 10(a + 9d) \Rightarrow 5a + 20d = 10a

$$+90d \Rightarrow a = -14d$$

Now,
$$a_{15} = a + 14d \Rightarrow a_{15} = -14d + 14d = 0$$
.

7. -1.1, -3.1, -5.1, -7.1,...

First term (a) = -1.1

We know that common difference is difference between any two consecutive terms of an A.P.

So, common difference(d) = (-3.1) - (-1.1)

8. nth term of 13, 19, 25, = nth term of 69, 68, 67,

$$13 + (n - 1) 6 = 69 + (n - 1) (-1)$$

$$13 + 6n - 6 = 69 - n + 1$$

$$n + 6n = 70 - 7$$

$$7n = 63$$

$$n = 9$$

Therefore, n = 9

9.
$$a = 5\frac{1}{2} = \frac{11}{2}$$
, $d = a_2 - a_1 = 11 - \frac{11}{2} = \frac{11}{2}$ and $x = 550$

A.T.Q.,
$$a_k = x$$

$$\Rightarrow a + (k-1)d = 550$$

$$\Rightarrow \frac{11}{2} + (k-1)\frac{11}{2} = 550$$

$$\Rightarrow \frac{1}{2} + \frac{1}{2} k - \frac{1}{2} = 550$$

$$\Rightarrow \frac{11}{2}k = 550$$

$$\Rightarrow$$
 k = $rac{550 imes2}{11}=100$

10. A.P. is 17,14,11,..., - 40

We have,

l = Last term = -40, a = 17 and, d = Common difference = 14 - 17 = -3

 \therefore 6th term from the end = l - (n -1)d

$$= 1 - (6-1) d$$

$$= -40 - 5 \times (-3)$$

$$= -40 + 15$$

$$= -25$$

So, 6th term of given A.P. is -25.

11. Given A.P. is 17, 15, 13, 11.......

Here, 1st term (a) = 17 and common difference (d) = (15 - 17) = -2

Let the sum of n terms be 72. Then,

$$S_n = 72$$

$$\Rightarrow \frac{n}{2} \cdot \{2a + (n-1)d\} = 72$$

$$\Rightarrow$$
 n·{2 × 17 + (n - 1)(-2)} = 144

$$\Rightarrow$$
 n(36 - 2n)=144

$$\Rightarrow$$
 2n²- 36n + 144 = 0

$$\Rightarrow$$
 n² - 18n + 72 = 0

$$\Rightarrow$$
n² - 12n - 6n + 72 = 0

$$\Rightarrow$$
 n(n - 12) - 6(n - 12) = 0

$$\Rightarrow$$
(n - 12)(n - 6) = 0

$$\Rightarrow$$
 n = 6 or n = 12.

 \therefore sum of first 6 terms = sum of first 12 terms = 72.

This means that the sum of all terms from 7th to 12th is zero.

12.
$$a_n = a + (n - 1)d$$

$$\Rightarrow$$
 3.6 = -18.9 + (n - 1) (2.5)

$$\Rightarrow$$
 3.6 + 18.9 = (n - 1) (2.5)

$$\Rightarrow$$
 22.5 = (n - 1) (2.5)

$$\Rightarrow n-1 = \frac{22.5}{2.5}$$

$$\Rightarrow$$
 n - 1 = 9

$$\Rightarrow$$
 n = 10

13.
$$18, 15\frac{1}{2}, 13, \ldots, -47$$

Here, a = 18

$$d = 15\frac{1}{2} - 18 = \frac{31}{2} - 18 = -\frac{5}{2}$$

$$a_n = -47$$

Let the number of terms be n.

Then,

$$a_n = -47$$

$$\Rightarrow$$
 a + (n - 1)d = -47

$$\Rightarrow 18 + (n-1)\left(-rac{5}{2}
ight) = -47$$

$$\Rightarrow -\frac{5}{2}(n-1) = -47 - 18$$

$$\Rightarrow -rac{5}{2}(n-1) = -65$$

$$\Rightarrow rac{5}{2}(n-1) = 65$$

$$\Rightarrow n-1=rac{65 imes2}{5}$$

$$\Rightarrow$$
 n - 1 = 26

$$\Rightarrow$$
 n = 26 + 1

$$\Rightarrow$$
 n = 27

Hence, the number of terms of the given AP is 27.

14. Let the given AP contains n terms.

First term, a = 5

Last term, l = 45

$$S_n = 400$$

$$\Rightarrow \frac{n}{2}$$
 [a + l] = 400

$$\Rightarrow \frac{\overline{n}}{2} [5 + 45] = 400$$

$$\Rightarrow$$
n \times 50 = 800

$$\Rightarrow$$
n = 16

Thus, the given AP contains 16 terms.

Let d be the common difference of the given AP.

then,

$$T_{16} = 45$$

$$\Rightarrow$$
a + 15d = 45

$$\Rightarrow$$
5 + 15d = 45

$$\Rightarrow$$
15d = 40

$$\Rightarrow$$
d = $\frac{40}{15}$ = $\frac{8}{3}$.

Therefore, common difference of the given AP is $\frac{8}{3}$.

15. Let first term be a and common difference be d.

Here,
$$a_{14} = 2a_8$$

$$a + 13d = 2(a + 7d)$$

$$a + 13d = 2a + 14d$$

$$a = -d...(i)$$

$$a_6 = -8$$

$$a + 5d = -8 ... (ii)$$

Putting the value of a from (i) in (ii), we get

$$-d + 5d = -8$$

$$4d = -8$$

$$d = -2$$

$$a = -(-2)$$

$$a = 2$$

So
$$a = 2, d = -2$$

$$S_{20} = rac{20}{2}[2 imes 2 + (20-1)(-2)]$$

$$= 10[4 + 19 \times (-2)]$$

$$= 10(4 - 38)$$

$$= 10 \times (-34)$$

= - 340. Which is the required sum of first 20 terms.

16. The given AP is 17, 14, 11,, – 40

Here,
$$a = 17$$

$$d = 14 - 17 = -3$$

$$1 = -40$$

Let there be n terms between in the given AP

Then, nth term = -40

$$\Rightarrow$$
 a + (n - 1)d = -40 $\because a_n = a + (n-1)d$

$$\Rightarrow$$
 17 + (n - 1) (-3) = -40

$$\Rightarrow$$
 (n - 1) (-3) = -40 - 17

$$\Rightarrow$$
 (n - 1) (-3) = -57

$$\Rightarrow n-1 = \frac{-57}{-3}$$

$$\Rightarrow$$
 n - 1= 19

$$\Rightarrow$$
 n = 19 + 1

$$\Rightarrow$$
 n = 20

Hence, there are 20 terms in the given AP.

Now, 6th term from the end

- = (20 6 + 1)th term from the beginning
- = 15th term from the beginning

= a + (15 - 1)d :
$$a_n = a + (n-1)d$$

$$= 17 + 14 (-3)$$

$$= 17 - 42$$

Hence, the 6th term from the end of the given AP is -25.

17. According to the question, we have to find the value of x.

We are given an AP, namely 1,2,3,..., (x -1), x, (x +1),..., 49

such that
$$1 + 2 + 3 + ... + (x - 1) = (x + 1) + (x + 2) + ... + 49$$
.

Thus, we have $S_{x-1} = S_{49} - S_x ... (i)$

Using the formula, $S_n = \frac{n}{2}$ (a + l) in (i), we have,

$$\frac{(x-1)}{2} \cdot \{1 + (x-1)\} = \frac{49}{2} \cdot (1+49) - \frac{x}{2} \cdot (1+x)$$

 $\Rightarrow \frac{x(x-1)}{2} + \frac{x(x+1)}{2} = 1225$

$$\Rightarrow$$
 2x² = 2450 \Rightarrow x² = 1225 \Rightarrow x = $\sqrt{1225}$ = 35

Hence, x = 35.

18. According to the question,

Sum of n terms of the A.P. $S_n = 3n^2 + 4n$

$$S_1 = 3 \times 1^2 + 4 \times 1 = 7 = t_1 \dots (i)$$

$$S_2 = 3 \times 2^2 + 4 \times 2 = 20 = t_1 + t_2 \dots (i)$$

$$S_3 = 3 \times 3^2 + 4 \times 3 = 39 = t_1 + t_2 + t_3 \dots$$
 (iii)

From (i), (ii), (iii)

$$t_1 = 7$$
, $t_2 = 13$, $t_3 = 19$

Common difference, d = 13 - 7 = 6

 25^{th} of the term of this A.P., $t_{25} = 7 + (25 - 1)6$

The 25th term of the A.P. is 151.

19. Consider the A.P. whose first term and common difference are 'a' and 'd' respectively. If sum of first 6 terms of an A.P. is 36.

$$S_6 = 36$$

$$\therefore rac{6}{2}$$
 [2a + (6 – 1)d] = 36 $\left[\because S_n = rac{n}{2}[2a + (n-1)d]
ight]$

$$\Rightarrow$$
 3[2a + 5d] = 36

$$\Rightarrow$$
 2a + 5d = $\frac{36}{3}$

$$\Rightarrow$$
 2a + 5d = 12 ...(i)

If sum of first 16 terms is 256,

So,
$$S_{16} = 256$$

$$\Rightarrow \frac{16}{2} [2a + (16 - 1)d] = 256$$

$$\Rightarrow$$
 8[2a + 15d] = 256

$$\Rightarrow$$
 2a + 15d = $\frac{256}{8}$

Subtracting (i) from (ii), we get

$$2a+15d=32$$
 ...(ii)

$$2a + 5d = 12$$
 [From (i)]

$$10d = 20$$

$$2a + 15d = 32$$

$$2a + 5d = 12$$

$$10d = 20$$

$$\Rightarrow$$
 d = 2

Now,
$$2a + 5d = 12$$
 [From (i)]

$$\Rightarrow$$
 2a + 5(2) = 12

$$\Rightarrow$$
 2a = 12 – 10

$$\Rightarrow$$
 a = $\frac{2}{2}$

$$\Rightarrow$$
 a = 1

Hence,
$$a = 1$$
 and $d = 2$

So,
$$S_{10} = \frac{10}{2} [2a + (10 - 1)d]$$

$$=5[2(1) + 9(2)]$$

$$= 5[2 + 18]$$

$$\Rightarrow$$
 S₁₀ = 100

Hence, the sum of first 10 terms is 100.

20. Let the first term and the common difference of the AP be a and d respectively.

According to the question,

$$\Rightarrow$$
 [a + (3 - 1)d] + [a + (7 - 1)d] = 6 = a + (n - 1)d

$$\Rightarrow$$
 (a + 2d) + (a + 6d) = 6 \Rightarrow 2a + 8d = 6

$$\Rightarrow$$
 a + 4d = 3 (1)

Dividing throughout by 2 &

(third term) (seventh term) = 8

$$\Rightarrow$$
 (a + 2d) (a + 6d) = 8

$$\Rightarrow$$
 (a + 4d - 2d) (a + 4d + 2d) = 8

$$\Rightarrow$$
 (3 - 2d) (3 + 2d) = 8

$$\Rightarrow$$
 9 - 4d² = 8

$$\Rightarrow 4d^2 = 1 \Rightarrow d^2 = rac{1}{4} \Rightarrow d + \pm rac{1}{2}$$

Case I, when
$$d=rac{1}{2}$$

Then from (1),
$$a+4\left(rac{1}{2}
ight)=3$$

$$\Rightarrow$$
 a + 2 = 3 \Rightarrow a = 3 - 2 \Rightarrow a = 1

 \therefore Sum of first sixteen terms of the AP = S_{16}

$$=rac{16}{2}[2a+(16-1)d]$$
 :: $S_n=rac{n}{2}[2a+(n-1)d]$

$$= 8[2a + 15d]$$

$$= 8[2(1) + 15(\frac{1}{2})]$$

$$=8[12+\frac{15}{2}]$$

$$= 8\left[\frac{19}{2}\right]$$

$$= 4 \times 19 = 76$$
Case II. When $d = -\frac{1}{2}$
Then from (1),
$$a + 4\left(-\frac{1}{2}\right) = 3$$

$$\Rightarrow a - 2 = 3 \Rightarrow a = 3 + 2 \Rightarrow a = 5$$

$$\therefore \text{ Sum of first sixteen terms of the AP = S}_{16}$$

$$= \frac{16}{2}[2a + (16 - 1)d] \therefore S_n = \frac{n}{2}[2a + (n - 1)d]$$

$$= 8[2a + 15d] = 8\left[2(5) + 15\left(-\frac{1}{2}\right)\right] = 8\left[10 - \frac{15}{2}\right] = 8\left[\frac{5}{2}\right] = 20$$

