CBSE Test Paper 01

Chapter 05 Arithmetic Progression

1. In an AP, if $\mathrm{a}=4, \mathrm{n}=7$ and $a_{n}=4$, then the value of ' d ' is (1)
a. 0
b. 1
c. 3
d. 2
2. The next two terms of the AP : $k, 2 k+1,3 k+2,4 k+3$, \qquad are (1)
a. $5 \mathrm{k}+4$ and $6 \mathrm{k}+5$
b. $4 \mathrm{k}+4$ and $4 \mathrm{k}+5$
c. $5 \mathrm{k}+5$ and $6 \mathrm{k}+6$
d. 5 k and 6 k
3. The common difference of the A.P. can be (1)
a. only negative
b. only zero
c. positive, negative or zero
d. only positive
4. The 7th term from the end of the A.P. $-11,-8,-5$, 49 is (1)
a. 28
b. 31
c. -11
d. -8
5. The common difference of the A.P whose $a_{n}=-3 n+7$ is (1)
a. 3
b. 1
c. -3
d. 2
6. If 5 times the $5^{\text {th }}$ term of an AP is equal to 10 times the $10^{\text {th }}$ term, show that its $15^{\text {th }}$ term is zero. (1)
7. Write the first term a and the common difference d of A.P. $-1.1,-3.1,-5.1,-7.1, \ldots$ (1)
8. For what value of n are the $n^{\text {th }}$ term of the following two AP's are same $13,19,25, \ldots$. and $69,68,67 \ldots$ (1)
9. Find k , if the given value of x is the $\mathrm{k}^{\text {th }}$ term of the given $\mathrm{AP} 5 \frac{1}{2}, 11,16 \frac{1}{2}, 22, \ldots, \mathrm{x}=$ 550. (1)
10. Find the $6^{\text {th }}$ term from the end of the A.P. $17,14,11, \ldots,-40$ (1)
11. How many terms of the AP $17,15,13,11, \ldots$ must be added to get the sum 72 ? (2)
12. Find n . Given $\mathrm{a}=$ first term $=-18.9, \mathrm{~d}=$ common difference $=2.5, \mathrm{a}_{\mathrm{n}}=$ the nth term $=$ 3.6, $\mathrm{n}=$? (2)
13. Find the number of terms in each of the following APs. $18,15 \frac{1}{2}, 13, \ldots .,-47$. (2)
14. The first and the last terms of an AP are 5 and 45 respectively. If the sum of all its terms is 400 , find the common difference and the number of terms. (3)
15. The 14 th term of an A.P. is twice its 8 th term. If the 6 th term is -8 , then find the sum of its first 20 terms. (3)
16. Find the 6 th term from end of the AP $17,14,11, \ldots,-40$. (3)
17. The houses of a row in a colony are numbered consecutively from 1 to 49 . Show that there is a value of x such that the sum of the numbers of the houses preceding the house numbered x is equal to the sum of the numbers of the houses following it. Find the value of x. (3)
18. The sum of first n terms of an A.P. is $3 n^{2}+4 n$. Find the $25^{\text {th }}$ term of this A.P. (4)
19. If sum of first 6 terms of an A.P. is 36 and that of the first 16 terms is 256 , find the sum of the first 10 terms. (4)
20. The sum of the third and the seventh terms of an AP is 6 and their product is 8 . Find the sum of the first sixteen terms of the AP. (4)

CBSE Test Paper 01

Chapter 05 Arithmetic Progression

Answers

1. a. 0

Explanation: Given: $\mathrm{a}=4, \mathrm{n}=7$ and $a_{n}=4$, then

$$
\begin{aligned}
& a_{n}=a+(n-1) d \\
& \Rightarrow 4=4+(7-1) d \\
& \Rightarrow 4-4=6 \mathrm{~d} \\
& \Rightarrow 6 d=0 \\
& \Rightarrow d=0
\end{aligned}
$$

2. a. $5 \mathrm{k}+4$ and $6 \mathrm{k}+5$

Explanation: Given: $k, 2 k+1,3 k+2,4 k+3, \ldots \ldots \ldots \ldots$
Here $d=2 k+1-k=k+1$
Therefore, the next two terms are
$4 k+3+k+1=5 k+4$ and $5 k+4+k+1=6 k+5$
3. c. positive, negative or zero

Explanation: The common difference of the A.P. can be positive, e.g. 1, 2, 3, 4
$\ldots . . \mathrm{d}$ is +ve and series is increasing negative e.g $4,3,2,1 \ldots \ldots \mathrm{~d}$ is - ve and series is decreasing
or zero also and the AP becomes constant e.g 4, 4, 4, 4 \qquad
4. b. 31

Explanation: Reversing the given A.P., we have
$49,46,43, \ldots \ldots \ldots \ldots,-11$
Here, $a=49, d=46-49=-3$ and $n=7$
$\therefore a_{n}=a+(n-1) d$
$\Rightarrow a_{7}=49+(7-1) \times(-3)$
$=49+6 \times(-3)$
$\Rightarrow a_{7}=49-18=31$
5. c. -3

Explanation: Given: $a_{n}=-3 n+7$

Putting $n=1,2,3$, we get

$$
\begin{aligned}
& a=-3 \times 1+7=-3+7=4 \\
& a_{2}=-3 \times 2+7=-6+7=1 \\
& a_{3}=-3 \times 3+7=-9+7=-2
\end{aligned}
$$

\therefore Common difference $(d)=a_{2}-a=1-4=-3$
6. Let $1^{\text {st }}$ term $=\mathrm{a}$ and common difference $=\mathrm{d}$.
$\mathrm{a}_{5}=\mathrm{a}+4 \mathrm{~d}, \mathrm{a}_{10}=\mathrm{a}+9 \mathrm{~d}$
According to the question, $5 \times \mathrm{a}_{5}=10 \times \mathrm{a}_{10} \Rightarrow 5(\mathrm{a}+4 \mathrm{~d})=10(\mathrm{a}+9 \mathrm{~d}) \Rightarrow 5 \mathrm{a}+20 \mathrm{~d}=10 \mathrm{a}$
$+90 \mathrm{~d} \Rightarrow \mathrm{a}=-14 \mathrm{~d}$
Now, $\mathrm{a}_{15}=\mathrm{a}+14 \mathrm{~d} \Rightarrow \mathrm{a}_{15}=-14 \mathrm{~d}+14 \mathrm{~d}=0$.
7. $-1.1,-3.1,-5.1,-7.1, \ldots$

First term (a) =-1.1
We know that common difference is difference between any two consecutive terms of an A.P.
So, common difference(d) $=(-3.1)-(-1.1)$

$$
\begin{aligned}
& =-3.1+1.1 \\
& =-2
\end{aligned}
$$

8. $n^{\text {th }}$ term of $13,19,25$, = nth term of 69, 68, 67,
$13+(n-1) 6=69+(n-1)(-1)$
$13+6 n-6=69-n+1$
$n+6 n=70-7$
$7 n=63$
$\mathrm{n}=9$
Therefore, $n=9$
9. $\mathrm{a}=5 \frac{1}{2}=\frac{11}{2}, \mathrm{~d}=\mathrm{a}_{2}-\mathrm{a}_{1}=11-\frac{11}{2}=\frac{11}{2}$ and $\mathrm{x}=550$
A.T.Q., $a_{k}=x$
$\Rightarrow a+(k-1) d=550$
$\Rightarrow \frac{11}{2}+(k-1) \frac{11}{2}=550$
$\Rightarrow \frac{11}{2}+\frac{11}{2} \mathrm{k}-\frac{11}{2}=550$
$\Rightarrow \frac{11}{2} k=550$
$\Rightarrow \mathrm{k}=\frac{550 \times 2}{11}=100$
10. A.P. is $17,14,11, \ldots,-40$

We have,
$\mathrm{l}=$ Last term $=-40, \mathrm{a}=17$ and, $\mathrm{d}=$ Common difference $=14-17=-3$
$\therefore 6$ th term from the end $=1-(n-1) d$
$=1-(6-1) \mathrm{d}$
$=-40-5 \times(-3)$
$=-40+15$
$=-25$
So, 6th term of given A.P. is -25 .
11. Given A.P. is $17,15,13,11 \ldots . . .$.

Here, 1 st term $(a)=17$ and common difference $(d)=(15-17)=-2$
Let the sum of n terms be 72. Then,
$\mathrm{S}_{\mathrm{n}}=72$
$\Rightarrow \frac{n}{2} \cdot\{2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}\}=72$
$\Rightarrow \mathrm{n} \cdot\{2 \times 17+(\mathrm{n}-1)(-2)\}=144$
$\Rightarrow \mathrm{n}(36-2 \mathrm{n})=144$
$\Rightarrow 2 \mathrm{n}^{2}-36 \mathrm{n}+144=0$
$\Rightarrow \mathrm{n}^{2}-18 \mathrm{n}+72=0$
$\Rightarrow \mathrm{n}^{2}-12 \mathrm{n}-6 \mathrm{n}+72=0$
$\Rightarrow \mathrm{n}(\mathrm{n}-12)-6(\mathrm{n}-12)=0$
$\Rightarrow(\mathrm{n}-12)(\mathrm{n}-6)=0$
$\Rightarrow \mathrm{n}=6$ or $\mathrm{n}=12$.
\therefore sum of first 6 terms $=$ sum of first 12 terms $=72$.
This means that the sum of all terms from 7th to 12th is zero.
12. $\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\Rightarrow 3.6=-18.9+(\mathrm{n}-1)(2.5)$
$\Rightarrow 3.6+18.9=(\mathrm{n}-1)(2.5)$
$\Rightarrow 22.5=(\mathrm{n}-1)(2.5)$
$\Rightarrow n-1=\frac{22.5}{2.5}$
$\Rightarrow \mathrm{n}-1=9$
$\Rightarrow \mathrm{n}=10$
13. $18,15 \frac{1}{2}, 13, \ldots,-47$

Here, $\mathrm{a}=18$
$d=15 \frac{1}{2}-18=\frac{31}{2}-18=-\frac{5}{2}$
$\mathrm{a}_{\mathrm{n}}=-47$
Let the number of terms be n.
Then,
$a_{n}=-47$
$\Rightarrow \mathrm{a}+(\mathrm{n}-1) \mathrm{d}=-47$
$\Rightarrow 18+(n-1)\left(-\frac{5}{2}\right)=-47$
$\Rightarrow-\frac{5}{2}(n-1)=-47-18$
$\Rightarrow-\frac{5}{2}(n-1)=-65$
$\Rightarrow \frac{5}{2}(n-1)=65$
$\Rightarrow n-1=\frac{65 \times 2}{5}$
$\Rightarrow \mathrm{n}-1=26$
$\Rightarrow \mathrm{n}=26+1$
$\Rightarrow \mathrm{n}=27$
Hence, the number of terms of the given AP is 27.
14. Let the given AP contains n terms.

First term, $\mathrm{a}=5$
Last term, $\mathrm{l}=45$
$S_{n}=400$
$\Rightarrow \frac{n}{2}[\mathrm{a}+\mathrm{l}]=400$
$\Rightarrow \frac{n}{2}[5+45]=400$
$\Rightarrow \mathrm{n} \times 50=800$
$\Rightarrow \mathrm{n}=16$
Thus, the given AP contains 16 terms.
Let d be the common difference of the given AP.
then,
$\mathrm{T}_{16}=45$
$\Rightarrow \mathrm{a}+15 \mathrm{~d}=45$
$\Rightarrow 5+15 \mathrm{~d}=45$
$\Rightarrow 15 \mathrm{~d}=40$
$\Rightarrow \mathrm{d}=\frac{40}{15}=\frac{8}{3}$.
Therefore, common difference of the given AP is $\frac{8}{3}$.
15. Let first term be a and common difference be d.

Here, $\mathrm{a}_{14}=2 \mathrm{a}_{8}$
$a+13 d=2(a+7 d)$
$a+13 d=2 a+14 d$
$\mathrm{a}=-\mathrm{d} . . .(\mathrm{i})$
$a_{6}=-8$
$\mathrm{a}+5 \mathrm{~d}=-8$
Putting the value of a from (i) in (ii), we get
$-d+5 d=-8$
$4 d=-8$
$d=-2$
Put d=-2 in (i)
$a=-(-2)$
$\mathrm{a}=2$
So ,a $=2, d=-2$
$S_{20}=\frac{20}{2}[2 \times 2+(20-1)(-2)]$
$=10[4+19 \times(-2)]$
$=10(4-38)$
$=10 \times(-34)$
$=-340$. Which is the required sum of first 20 terms.
16. The given AP is $17,14,11, \ldots \ldots . .,-40$

Here, $\mathrm{a}=17$
$d=14-17=-3$
$\mathrm{l}=-40$
Let there be n terms between in the given AP
Then, nth term $=-40$
$\Rightarrow \mathrm{a}+(\mathrm{n}-1) \mathrm{d}=-40 \because a_{n}=a+(n-1) d$
$\Rightarrow 17+(\mathrm{n}-1)(-3)=-40$
$\Rightarrow(\mathrm{n}-1)(-3)=-40-17$
$\Rightarrow(\mathrm{n}-1)(-3)=-57$
$\Rightarrow n-1=\frac{-57}{-3}$
$\Rightarrow \mathrm{n}-1=19$
$\Rightarrow \mathrm{n}=19+1$
$\Rightarrow \mathrm{n}=20$
Hence, there are 20 terms in the given AP.
Now, 6th term from the end
$=(20-6+1)$ th term from the beginning
$=15 \mathrm{th}$ term from the beginning
$=\mathrm{a}+(15-1) \mathrm{d} \because a_{n}=a+(n-1) d$
$=17+14(-3)$
$=17-42$
$=-25$
Hence, the 6th term from the end of the given AP is -25 .
17. According to the question, we have to find the value of x.

We are given an AP, namely $1,2,3, \ldots,(x-1), x,(x+1), \ldots, 49$
such that $1+2+3+\ldots+(x-1)=(x+1)+(x+2)+\ldots+49$.
Thus, we have $\mathrm{S}_{\mathrm{x}-1}=\mathrm{S}_{49}-\mathrm{S}_{\mathrm{x}} \ldots$ (i)
Using the formula, $\mathrm{S}_{\mathrm{n}}=\frac{n}{2}(\mathrm{a}+\mathrm{l})$ in (i), we have,
$\frac{(x-1)}{2} \cdot\{1+(x-1)\}=\frac{49}{2} \cdot(1+49)-\frac{x}{2} \cdot(1+x)$
$\Rightarrow \frac{x(x-1)}{2}+\frac{x(x+1)}{2}=1225$
$\Rightarrow 2 \mathrm{x}^{2}=2450 \Rightarrow \mathrm{x}^{2}=1225 \Rightarrow \mathrm{x}=\sqrt{1225}=35$
Hence, $x=35$.
18. According to the question,

Sum of n terms of the A.P. $S_{n}=3 n^{2}+4 n$
$S_{1}=3 \times 1^{2}+4 \times 1=7=t_{1} \ldots$.(i)
$\mathrm{S}_{2}=3 \times 2^{2}+4 \times 2=20=\mathrm{t}_{1}+\mathrm{t}_{2}$
$S_{3}=3 \times 3^{2}+4 \times 3=39=t_{1}+t_{2}+t_{3} \ldots$. (iii)
From (i), (ii), (iii)
$\mathrm{t}_{1}=7, \mathrm{t}_{2}=13, \mathrm{t}_{3}=19$
Common difference, $d=13-7=6$
$25^{\text {th }}$ of the term of this A.P., $\mathrm{t}_{25}=7+(25-1) 6$
$=7+144=151$
\therefore The $25^{\text {th }}$ term of the A.P. is 151 .
19. Consider the A.P. whose first term and common difference are ' a ' and ' d ' respectively. If sum of first 6 terms of an A.P. is 36.
$S_{6}=36$
$\therefore \frac{6}{2}[2 \mathrm{a}+(6-1) \mathrm{d}]=36\left[\because S_{n}=\frac{n}{2}[2 a+(n-1) d]\right.$
$\Rightarrow 3[2 \mathrm{a}+5 \mathrm{~d}]=36$
$\Rightarrow 2 \mathrm{a}+5 \mathrm{~d}=\frac{36}{3}$
$\Rightarrow 2 \mathrm{a}+5 \mathrm{~d}=12 \ldots$ (i)
If sum of first 16 terms is 256,
So, $\mathrm{S}_{16}=256$
$\Rightarrow \frac{16}{2}[2 \mathrm{a}+(16-1) \mathrm{d}]=256$
$\Rightarrow 8[2 \mathrm{a}+15 \mathrm{~d}]=256$
$\Rightarrow 2 \mathrm{a}+15 \mathrm{~d}=\frac{256}{8}$
$\Rightarrow 2 \mathrm{a}+15 \mathrm{~d}=32 \ldots$ (ii)
Subtracting (i) from (ii), we get
$2 a+15 d=32 \quad$...(ii)
$2 a+5 d=12 \quad[\operatorname{From}(\mathrm{i})]$
$\frac{-\quad-\quad-}{10 d=20}$
$2 a+15 d=32$
$2 a+5 d=12$

- - -

$10 d=20$
$\Rightarrow \mathrm{d}=2$
Now, $2 \mathrm{a}+5 \mathrm{~d}=12$ [From (i)]
$\Rightarrow 2 a+5(2)=12$
$\Rightarrow 2 a+10=12$
$\Rightarrow 2 \mathrm{a}=12-10$
$\Rightarrow \mathrm{a}=\frac{2}{2}$
$\Rightarrow \mathrm{a}=1$
Hence, $\mathrm{a}=1$ and $\mathrm{d}=2$
So, $\mathrm{S}_{10}=\frac{10}{2}[2 \mathrm{a}+(10-1) \mathrm{d}]$
$=5[2(1)+9(2)]$
$=5[2+18]$
$=5[20]$
$=100$
$\Rightarrow \mathrm{S}_{10}=100$
Hence, the sum of first 10 terms is 100.
20. Let the first term and the common difference of the AP be a and d respectively. According to the question,
Third term + seventh term $=6$
$\Rightarrow[a+(3-1) d]+[a+(7-1) d]=6=a+(n-1) d$
$\Rightarrow(\mathrm{a}+2 \mathrm{~d})+(\mathrm{a}+6 \mathrm{~d})=6 \Rightarrow 2 \mathrm{a}+8 \mathrm{~d}=6$
$\Rightarrow \mathrm{a}+4 \mathrm{~d}=3$
Dividing throughout by 2 \&
(third term) $($ seventh term $)=8$
$\Rightarrow(\mathrm{a}+2 \mathrm{~d})(\mathrm{a}+6 \mathrm{~d})=8$
$\Rightarrow(\mathrm{a}+4 \mathrm{~d}-2 \mathrm{~d})(\mathrm{a}+4 \mathrm{~d}+2 \mathrm{~d})=8$
$\Rightarrow(3-2 d)(3+2 d)=8$
$\Rightarrow 9-4 \mathrm{~d}^{2}=8$
$\Rightarrow 4 d^{2}=1 \Rightarrow d^{2}=\frac{1}{4} \Rightarrow d+ \pm \frac{1}{2}$
Case I, when $d=\frac{1}{2}$
Then from (1), $a+4\left(\frac{1}{2}\right)=3$
$\Rightarrow \mathrm{a}+2=3 \Rightarrow \mathrm{a}=3-2 \Rightarrow \mathrm{a}=1$
\therefore Sum of first sixteen terms of the AP $=\mathrm{S}_{16}$
$=\frac{16}{2}[2 a+(16-1) d] \because S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=8[2 a+15 d]$
$=8\left[2(1)+15\left(\frac{1}{2}\right)\right]$
$=8\left[12+\frac{15}{2}\right]$
$=8\left[\frac{19}{2}\right]$
$=4 \times 19=76$
Case II. When $d=-\frac{1}{2}$
Then from (1),
$a+4\left(-\frac{1}{2}\right)=3$
$\Rightarrow \mathrm{a}-2=3 \Rightarrow \mathrm{a}=3+2 \Rightarrow \mathrm{a}=5$
\therefore Sum of first sixteen terms of the AP $=\mathrm{S}_{16}$
$=\frac{16}{2}[2 a+(16-1) d] \because S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=8[2 a+15 d]=8\left[2(5)+15\left(-\frac{1}{2}\right)\right]=8\left[10-\frac{15}{2}\right]=8\left[\frac{5}{2}\right]=20$

