CBSE Test Paper 02

Chapter 2 polynomials

1. If ' α ' and ' β ' are the zeroes of the polynomial $\mathrm{x}^{2}-6 \mathrm{x}+8$, then the value of $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}$ is (1)
a. 8
b. 6
c. 12
d. 9
2. A polynomial of degree \qquad is called a linear polynomial. (1)
a. 1
b. 3
c. 2
d. 0
3. If $\sqrt{2}$ and $-\sqrt{2}$ are the zeroes of $2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$, then the other zeroes are (1)
a. -2 and $-\frac{1}{2}$
b. 2 and $\frac{1}{2}$
c. $\frac{1}{2}$ and $-\frac{1}{2}$
d. 1 and $\frac{1}{2}$
4. If ' α ' and ' β ' are the zeroes of a quadratic polynomial $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, then $\alpha+\beta=(\mathbf{1})$
5. $\frac{-b}{a}$
6. $\frac{-c}{a}$
7. $\frac{c}{a}$
8. $\frac{b}{a}$
9. The degree of a biquadratic polynomial is (1)
10. 2
11. 4
12. 3
13. 1
14. Find a quadratic polynomial, whose sum and product of zeros are -5 and 6 respectively. (1)
15. Sum and product of zeroes of a quadratic polynomial are 0 and $\sqrt{15}$ respectively. Find the quadratic polynomial. (1)
16. If α and β are the zeroes of the quadratic polynomial $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-5 \mathrm{x}+4$, find the value of $\frac{1}{\alpha}+\frac{1}{\beta}-2 \alpha \beta$. (1)
17. If one zero of $2 x^{2}-3 x+k$ is reciprocal to the other, then find the value of k (1)
18. If α and β are the zeroes of the quadratic polynomial $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}-\mathrm{p}(\mathrm{x}+1)-\mathrm{c}$ such that $(\alpha+1)(\beta+1)=0$, what is the value of c ? (1)
19. Find the value of b for which the polynomial $2 x^{3}+9 x^{2}-x-b$ is divisible by $2 x+3$ (2)
20. α, β are zeroes of the quadratic polynomial $\mathrm{x}^{2}-(\mathrm{k}+6) \mathrm{x}+2(2 \mathrm{k}-1)$. Find the value of k if $\alpha+\beta=\frac{1}{2} \alpha \beta$. (2)
21. If α and β are the zeros of the polynomial $\mathrm{f}(\mathrm{x})=5 \mathrm{x}^{2}-7 \mathrm{x}+1$, find the value of $\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)$.
22. If α and β are the zeros of the quadratic polynomial $\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{2}-4 \mathrm{x}+1$, find a quadratic polynomial whose zeros are $\frac{\alpha^{2}}{\beta}$ and $\frac{\beta^{2}}{\alpha}$. (3)
23. Obtain all zeros of the polynomial $\left(2 x^{3}-4 x-x^{2}+2\right)$, if two of its zeros are $\sqrt{2}$ and $\sqrt{2}$ (3)
24. Find the zeroes of the quadratic polynomial $5 x^{2}+8 x-4$ and verify the relationship between the zeroes and the coefficients of the polynomial. (3)
25. Find the zeroes of the polynomial $\mathrm{y}^{2}+\frac{3}{2} \sqrt{5} y-5$ by factorisation method and verify the relationship between the zeroes and coefficient of the polynomials. (3)
26. If two zeroes of the polynomial $p(x)=x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $2 \pm \sqrt{3}$. Find the other zeroes. (4)
27. Given that $x-\sqrt{5}$ is a factor of the polynomial $x^{3}-3 \sqrt{5} x^{2}-5 x+15 \sqrt{5}$, find all the zeroes of the polynomial. (4)
28. If the polynomial $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by $\left(x^{2}-2 x+k\right)$, the remainder comes out to be $x+a$, find k and a. (4)

CBSE Test Paper 02

Chapter 2 polynomials

Solution

1. d. 9

Explanation: Here $a=1, b=-6, c=8, \alpha+\beta=6, \alpha \beta=8$
Since $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}=\frac{\alpha^{3}+\beta^{3}}{\alpha \beta}=\frac{(\alpha+\beta)\left[\alpha^{2}+\beta^{2}-\alpha \beta\right]}{\alpha \beta}=\frac{(\alpha+\beta)\left[\alpha^{2}+\beta^{2}+2 \alpha \beta-3 \alpha \beta\right]}{\alpha \beta}$
$=\frac{(\alpha+\beta)\left[(\alpha+\beta)^{2}-3 \alpha \beta\right]}{\alpha \beta}$
$=\frac{6\left[6^{2}-3 \times 8\right]}{8}=9$
2. a. 1

Explanation: A polynomial of degree 1 is called a linear polynomial. Example $4 x+3,65 y$ are linear polynomials.
3. d. 1 and $\frac{1}{2}$

Explanation: Since $\sqrt{2}$ and $-\sqrt{2}$ are the zeroes of
$2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$, then $(x-\sqrt{2})$ and $(x+\sqrt{2})$ are the factors of given polynomial i.e., $(x-\sqrt{2})(x+\sqrt{2})=\left(x^{2}-2\right)$ is a factor of given
polynomial.

$$
\begin{aligned}
& \therefore p(x)=2 x^{4}-3 x^{3}-3 x^{2}+6 x-2 \Rightarrow p(x)=\left(x^{2}-2\right)\left(2 x^{2}-3 x+1\right) \\
& \begin{array}{c}
x ^ { 2 } - 2 \longdiv { 2 x ^ { 4 } - 3 x ^ { 3 } - 3 x ^ { 2 } + 6 x + 2 } \\
\frac{-4 x^{4} \quad-4 x^{2}}{-3 x^{3}+x^{2}+6 x-2} \\
\quad \frac{-3 x^{3}+6 x}{+}- \\
\frac{x^{2}-2}{x^{2}-2} \\
\frac{-+}{0} \\
\Rightarrow p(x)=\left(x^{2}-2\right)\left[2 x^{2}-2 x-x+1\right] \Rightarrow \\
p(x)=\left(x^{2}-2\right)[2 x(x-1)-1(x-1)] \Rightarrow \\
p(x)=\left(x^{2}-2\right)(x-1)(2 x-1)
\end{array}
\end{aligned}
$$

\therefore Other zeroes are $\mathrm{x}-1=0$ and $2 \mathrm{x}-1=0 \Rightarrow \mathrm{x}=1$ and $x=\frac{1}{2}$
4. a. $\frac{-b}{a}$

Explanation: If α and β are the zeroes of a quadratic polynomial
$a x^{2}+b x+c$,
\because Sum of the zeroes of a quadratic polynomial $a x^{2}+b x+c=\frac{-(\text { coefficient of } x)}{\text { coefficient of } x^{2}}$ then $\alpha+\beta=\frac{-b}{a}$
5. b. 4

Explanation: Biquadratic polynomial is a polynomial of the fourth degree.
Biquadratic polynomial $=a\left(x^{2}\right)^{2}+b(x)^{2}+c=a x^{4}+b x^{2}+c$
6. Let α and β be the zeros of the required polynomial.

Then, $(\alpha+\beta)=-5$ and $\alpha \beta=6$
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta=\mathrm{x}^{2}-(-5) \mathrm{x}+6$
$=x^{2}+5 x+6$.
Hence, the required polynomial is $f(x)=x^{2}+5 x+6$.
7. Here sum of zeroes, $S=0$

Product of zeroes, $P=\sqrt{15}$
Quadratic polynomial $p(x)=x^{2}-(S) x+P$
$=x^{2}-0 x+\sqrt{15}$
$=x^{2}+\sqrt{15}$
8. We have, α and β are the roots of the quadratic polynomial. $f(x)=x^{2}-5 x+4$

Sum of zeros: $\alpha+\beta=-\frac{b}{a}=-\frac{\text { coefficient of } x}{\text { coefficient of } x^{2}}$
product of zeros: $\alpha \beta=\frac{c}{a}=\frac{\text { constant term }}{\text { coefficient of } x^{2}}$
We have $\mathrm{a}=1, \mathrm{~b}=-5$ and $\mathrm{c}=4$.
Sum of the roots $=\alpha+\beta=5$
Product of the roots $=\alpha \beta=4$
So,
$\frac{1}{\alpha}+\frac{1}{\beta}-2 \alpha \beta=\frac{\beta+\alpha}{\alpha \beta}-2 \alpha \beta$
$5 / 4-2 \times 4=5 / 4-8=(5-32) / 4=-27 / 4$
Hence,we get the result of $\frac{1}{\alpha}+\frac{1}{\beta}-2 \alpha \beta=-\frac{27}{4}$
9. Let be the two zeroes of the given polynomial.

Then, $\alpha \times \frac{1}{\alpha}=\frac{\text { Constant_term }}{\text { Coefficient }\left(x^{2}\right)}$
$\Rightarrow 1=\frac{k}{2}$
$\Rightarrow k=2$
10. It is given that:
$p(x)=x^{2}-p x-p-c$
Here $\mathrm{a}=1, \mathrm{~b}=-\mathrm{p}$ and $\mathrm{c}=-\mathrm{p}-\mathrm{c}$
$\therefore \alpha+\beta=p$ and $\alpha \beta=(-p-c)$
$\because \quad(\alpha+1)(\beta+1)=0$
$\Rightarrow \quad \alpha \beta+\alpha+\beta+1=0$
$\Rightarrow-\mathrm{p}-\mathrm{c}+\mathrm{p}+1=0$
$\Rightarrow \mathrm{c}=1$
11.

$$
\begin{aligned}
& 2 x + 3 \longdiv { x ^ { 2 } + 3 x - 5 } \frac { x ^ { 3 } + 9 x ^ { 2 } - x - b } { 2 x ^ { 3 } + 3 x ^ { 2 } } \\
& 6 x^{2}-x-b \\
& 6 \mathrm{x}^{2}+9 \mathrm{x} \\
& \text {---------- } \\
& -10 \mathrm{x}-\mathrm{b} \\
& -10 x-15 \\
& 15-\mathrm{b}
\end{aligned}
$$

If the polynomial $2 x^{3}+9 x^{2}-x-b$ is divisible by $2 x+3$, then the remainder must be zero.

So, $15-\mathrm{b}=0, \mathrm{~b}=15$
12. Polynomial is $\mathrm{x}^{2}-(\mathrm{k}+6) \mathrm{x}+2(2 \mathrm{k}-1)$.
$\alpha+\beta=-\frac{\mathrm{b}}{\mathrm{a}}=\frac{\mathrm{k}+6}{1}=\mathrm{k}+6$
and $\alpha \beta=\frac{\mathrm{c}}{\mathrm{a}}=\frac{2(2 \mathrm{k}-1)}{1}=4 \mathrm{k}-2$
Now, $\alpha+\beta=\frac{1}{2} \alpha \beta$
$\mathrm{k}+6=\frac{1}{2}(4 \mathrm{k}-2)$
$k+6=2 k-1$
$\mathrm{k}=7$
13. Compare $f(x)=5 x^{2}-7 x+1$ with $a x^{2}+b x+c$ we get,
$\mathrm{a}=5, \mathrm{~b}=-7$ and $\mathrm{c}=1$
Since α and β are the zeros of $5 \mathrm{x}^{2}-7 \mathrm{x}+1$, we have
$\alpha+\beta=-\frac{(b)}{a}=-\frac{(-7)}{5}=\frac{7}{5}$
$\alpha \beta=\frac{c}{a}=\frac{1}{5}$
$\therefore \frac{1}{\alpha}+\frac{1}{\beta}=\frac{\beta+\alpha}{\alpha \beta}$
$=\frac{\frac{7}{5}}{\frac{1}{5}}$
$=\frac{\frac{7}{5}}{5} \times \frac{5}{1}$
$=7$
14. Here it is given that the zeros of $\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{2}-4 \mathrm{x}+1$ are α and β

Here $a=3, b=-4$ and $c=1$
$\alpha+\beta=-\frac{b}{\mathrm{a}}=-\left(-\frac{4}{3}\right)=\frac{4}{3}$ and $\alpha \beta=\frac{\mathrm{c}}{\mathrm{a}}=\frac{1}{3}$
Let S and P denote respectively the sum and product of the zeros of the polynomial whose zeroes are $\frac{\alpha^{2}}{\beta}$ and $\frac{\beta^{2}}{\alpha}$, then
$\mathrm{S}=\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}=\frac{\alpha^{3}+\beta^{3}}{\alpha \beta}=\frac{(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)}{\alpha \beta}=\frac{\left(\frac{4}{3}\right)^{3}-3 \times \frac{1}{3} \times \frac{4}{3}}{\frac{1}{3}}=\frac{28}{9}$.
and, $\mathrm{P}=\frac{\alpha^{2}}{\beta} \times \frac{\beta^{2}}{\alpha}=\alpha \beta=\frac{1}{3}$.
Hence the polynomial with zeros $\frac{\alpha^{2}}{\beta}$ and $\frac{\beta^{2}}{\alpha}$ is
$g(x)=x^{2}-P x+S=0$
putting values of P and S from (1) and (2) we get the polynomial
$\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}-\frac{28}{9} \mathrm{x}+\frac{1}{3}$
or $g(x)=9 x^{2}-28 x+3$
15. The given polynomial is:
$f(x)=2 x^{3}-x^{2}-4 x+2$.
It is given that the two zeroes of the above polynomial are $\sqrt{2}$ and $-\sqrt{2}$
Therefore, $(x-\sqrt{2})(x+\sqrt{2})=\left(x^{2}-2\right)$ is a factor of $f(x)$.
Now we divide $(x)=2 x^{3}-x^{2}-4 x+2$ by $\left(x^{2}-2\right)$, we obtain

$$
\begin{gathered}
x ^ { 2 } - 2 \longdiv { 2 x ^ { 3 } - x ^ { 2 } - 4 x + 2 (2 x - 1 } \\
\frac{2 x^{3}-4 x}{-x^{2}+2} \\
\frac{-x^{2}+2}{x}
\end{gathered}
$$

Where quotient $=(2 \mathrm{x}-1)$
$\therefore \mathrm{f}(\mathrm{x})=0 \Rightarrow\left(\mathrm{x}^{2}-2\right)(2 \mathrm{x}-1)=0$
$\Rightarrow(\mathrm{x}-\sqrt{2})(\mathrm{x}+\sqrt{2})(2 \mathrm{x}-1)=0$
$\Rightarrow(\mathrm{x}-\sqrt{2})=0$ or $(\mathrm{x}+\sqrt{2})=0$ or $(2 \mathrm{x}-1)=0$
$\Rightarrow \mathrm{x}=\sqrt{2}$ or $\mathrm{x}=-\sqrt{2}$ or $\mathrm{x}=\frac{1}{2}$.
Hence, all zeros of $f(x)$ are $\sqrt{2},-\sqrt{2}$ and $\frac{1}{2}$.
16. $\mathrm{p}(\mathrm{x})=5 \mathrm{x}^{2}+8 \mathrm{x}-4=0$

$$
\begin{aligned}
& =5 x^{2}+10 x-2 x-4=0 \\
& =5 x(x+2)-2(x+2)=0 \\
& =(x+2)(5 x-2)=0
\end{aligned}
$$

Hence, zeroes are -2 and $\frac{2}{5}$
Verification: Sum of zeroes $=-2+\frac{2}{5}=\frac{-8}{5}$
Product of zeroes $=(-2) \times\left(\frac{2}{5}\right)=\frac{-4}{5}$
Again sum of zeroes $=-\frac{\text { Coeff. of } x}{\text { Coeff. of } x^{2}}=\frac{-8}{5}$
Product of zeroes $=\frac{\text { Constant term }}{\text { Coeff. of } x^{2}}=\frac{-4}{5}$

Verified.

17. $\mathrm{y}^{2}+\frac{3}{2} \sqrt{5} y-5=\frac{1}{2}\left(2 y^{2}+3 \sqrt{5} y-10\right)$
$=\frac{1}{2}\left(2 y^{2}+4 \sqrt{5} y-\sqrt{5} y-10\right)$
$=\frac{1}{2}[2 y(y+2 \sqrt{5})-\sqrt{5}(y+2 \sqrt{5})]$
$=\frac{1}{2}(y+2 \sqrt{5})(2 y-\sqrt{5})$
$\Rightarrow \quad y=-2 \sqrt{5}, \frac{\sqrt{5}}{2}$ are zeroes of the polynomial.
If given polynomial is $\mathrm{y}^{2}+\frac{3}{2} \sqrt{5} y-5$ then $\mathrm{a}=1, \mathrm{~b}=\frac{3}{2} \sqrt{5}$ and $\mathrm{c}=-5$
Sum of zeroes $=-2 \sqrt{5}+\frac{\sqrt{5}}{2}=\frac{-3 \sqrt{5}}{2}$
Also, $\frac{-b}{a}=\frac{-3 \sqrt{5}}{2}$
From (i) and (ii)
Sum of zeroes $=\frac{-b}{a}$

Product of zeroes $=-2 \sqrt{5} \times \frac{\sqrt{5}}{2}=-5$
Also, $\frac{c}{a}=\frac{-5}{1}=-5$ \qquad (iv)

From (iii) and (iv)
Product of zeroes $=\frac{c}{a}$
18. As $2 \pm \sqrt{3}$ are the zeroes of $p(x)$, so $x-(2 \pm \sqrt{3})$ are the factors of $p(x)$ and the product of factors,
$\{x-(2+\sqrt{3})\}\{x-(2-\sqrt{3})\}$
$=\{(x-2)-\sqrt{3}\}\{(x-2)+\sqrt{3}\}$
$=(x-2)^{2}-(\sqrt{3})^{2}$
$=x^{2}-4 \mathrm{x}+1$
Dividing $p(x)$ by $x^{2}-4 x+1$

$$
\begin{array}{r}
\left.x^{2}-4 x+1\right) \frac{x^{2}-2 x-35}{x^{4}-6 x^{3}-26 x^{2}+138 x-35} \\
x^{4}-4 x^{3}+x^{2} \\
\frac{-+-}{-2 x^{3}-27 x^{2}+138 x} \\
\frac{-2 x^{3}+8 x^{2}-2 x}{+\quad-\quad+} \\
+\begin{array}{l}
-35 x^{2}+140 x-35 \\
-35 x^{2}+140 x-35 \\
+\quad- \\
\\
\hline
\end{array}
\end{array}
$$

Factorising $\left(x^{2}-2 x-35\right)$ we get
$=(x+5)(x-7)$
$x=-5,7$
Hence, other two zeroes of $\mathrm{p}(\mathrm{x})$ are -5 and 7.
19.

$$
\begin{array}{r}
\frac{x^{2}-2 \sqrt{5} x-15}{x-\sqrt{5}) x^{3}-3 \sqrt{5} x^{2}-5 x+15 \sqrt{5}} \\
x^{3}-\sqrt{5} x^{2} \\
=+\quad-2 \sqrt{5} x^{2}-5 x \\
\begin{array}{l}
-2 \sqrt{5} x^{2}+10 x \\
+\quad- \\
\frac{-15 x+15 \sqrt{5}}{} \\
\frac{-15 x+15 \sqrt{5}}{0}
\end{array}
\end{array}
$$

On factorising the quotient, we get
$x^{2}-2 \sqrt{5} x-15=x^{2}-3 \sqrt{5} x+\sqrt{5} x-15$
$=x(x-3 \sqrt{5})+\sqrt{5}(x-3 \sqrt{5})$
$=(x+\sqrt{5})(x-3 \sqrt{5})$
$\therefore(x+\sqrt{5})(x-3 \sqrt{5})=0$
$\Rightarrow x=-\sqrt{5}, 3 \sqrt{5}$
Therefore, all the zeroes are $\sqrt{5},-\sqrt{5}$ and $3 \sqrt{5}$.
20.

$$
\begin{aligned}
& \left.x^{2}-2 x+k\right) \frac{x^{2}-4 x+(8-k)}{x^{4}-6 x^{3}+16 x^{2}-25 x+10} \\
& x^{4}-2 x^{3}+k x^{2} \\
& -+- \\
& -4 x^{3}+8 x^{2}-4 k x \\
& +\frac{+}{(8-k) x^{2}-(25-4 k) x+10} \\
& (8-k) x^{2}-(16-2 k) x+\left(8 k-k^{2}\right) \\
& =-\quad+\quad-\quad-\quad(2 k-9) x+\left(10-8 k+k^{2}\right)
\end{aligned}
$$

Given, remainder $=\mathrm{x}+\mathrm{a}$
On comparing the multiples of x
$(2 k-9) x=1$
or, $2 \mathrm{k}-9=1$ or $\mathrm{k}=\frac{10}{2}=5$
On putting this value of k into other portion of remainder, we get and $\mathrm{a}=10-8 \mathrm{k}+\mathrm{k}^{2}=10-40+25=-5$

