CBSE Test Paper 02

Chapter 2 polynomials

- 1. If ' α ' and ' β ' are the zeroes of the polynomial x^2 -6x + 8, then the value of $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ is (1)
 - a. 8
 - b. 6
 - c. 12
 - d. 9
- 2. A polynomial of degree ____ is called a linear polynomial. (1)
 - a. 1
 - b. 3
 - c. 2
 - d. 0
- 3. If $\sqrt{2}$ and $-\sqrt{2}$ are the zeroes of $2x^4$ $3x^3$ $3x^2$ + 6x 2, then the other zeroes are (1)
 - a. $-2 \text{ and } -\frac{1}{2}$
 - b. 2 and $\frac{1}{2}$
 - c. $\frac{1}{2}$ and $-\frac{1}{2}$
 - d. 1 and $\frac{1}{2}$
- 4. If ' α ' and ' β ' are the zeroes of a quadratic polynomial ax² + bx + c, then $\alpha + \beta =$ (1)
 - 1. $\frac{-b}{a}$
 - 2. $\frac{a}{c}$
 - 3. $\frac{c}{a}$
 - 4. $\frac{b}{a}$
- 5. The degree of a biquadratic polynomial is (1)
 - 1. 2
 - 2. 4
 - 3. 3
 - 4. 1
- 6. Find a quadratic polynomial, whose sum and product of zeros are -5 and 6 respectively. **(1)**

- 7. Sum and product of zeroes of a quadratic polynomial are 0 and $\sqrt{15}\,$ respectively. Find the quadratic polynomial. (1)
- 8. If α and β are the zeroes of the quadratic polynomial f(x) = x^2 5x + 4, find the value of $\frac{1}{\alpha} + \frac{1}{\beta} 2\alpha\beta$. (1)
- 9. If one zero of $2x^2-3x+k$ is reciprocal to the other, then find the value of k **(1)**
- 10. If α and β are the zeroes of the quadratic polynomial p(x) = x^2 p(x + 1) c such that $(\alpha+1)(\beta+1)$ = 0, what is the value of c? (1)
- 11. Find the value of b for which the polynomial $2x^3+9x^2-x-b$ is divisible by 2x+3 (2)
- 12. α, β are zeroes of the quadratic polynomial x^2 (k + 6)x + 2(2k 1). Find the value of k if $\alpha + \beta = \frac{1}{2}\alpha\beta$. (2)
- 13. If α and β are the zeros of the polynomial $f(x) = 5x^2 7x + 1$, find the value of $\left(\frac{1}{\alpha} + \frac{1}{\beta}\right)$. (2)
- 14. If α and β are the zeros of the quadratic polynomial f(x) = 3x² 4x + 1, find a quadratic polynomial whose zeros are $\frac{\alpha^2}{\beta}$ and $\frac{\beta^2}{\alpha}$. (3)
- 15. Obtain all zeros of the polynomial (2x³ 4x x² + 2), if two of its zeros are $\sqrt{2}$ and $\sqrt{2}$ (3)
- 16. Find the zeroes of the quadratic polynomial $5x^2 + 8x 4$ and verify the relationship between the zeroes and the coefficients of the polynomial. (3)
- 17. Find the zeroes of the polynomial $y^2 + \frac{3}{2}\sqrt{5}y$ 5 by factorisation method and verify the relationship between the zeroes and coefficient of the polynomials. (3)
- 18. If two zeroes of the polynomial p(x) = x^4 $6x^3$ $26x^2$ + 138x 35 are $2 \pm \sqrt{3}$. Find the other zeroes. **(4)**
- 19. Given that $x \sqrt{5}$ is a factor of the polynomial $x^3 3\sqrt{5}x^2 5x + 15\sqrt{5}$, find all the zeroes of the polynomial. **(4)**
- 20. If the polynomial x^4 $6x^3$ + $16x^2$ 25x + 10 is divided by (x^2 2x + k), the remainder comes out to be x + a, find k and a. (4)

CBSE Test Paper 02 Chapter 2 polynomials

Solution

1. d. 9

Explanation: Here
$$a=1,b=-6,c=8$$
, $\alpha+\beta=6,\alpha\beta=8$ Since $\frac{\alpha^2}{\beta}+\frac{\beta^2}{\alpha}=\frac{\alpha^3+\beta^3}{\alpha\beta}=\frac{(\alpha+\beta)[\alpha^2+\beta^2-\alpha\beta]}{\alpha\beta}=\frac{(\alpha+\beta)[\alpha^2+\beta^2+2\alpha\beta-3\alpha\beta]}{\alpha\beta}=\frac{(\alpha+\beta)[(\alpha+\beta)^2-3\alpha\beta]}{\alpha\beta}=\frac{6[6^2-3\times 8]}{8}=9$

2. a. 1

Explanation: A polynomial of degree 1 is called a linear polynomial. Example 4x + 3, 65y are linear polynomials.

3. d. 1 and $\frac{1}{2}$

Explanation: Since $\sqrt{2}$ and $-\sqrt{2}$ are the zeroes of $2x^4-3x^3-3x^2+6x-2$, then $\left(x-\sqrt{2}\right)$ and $\left(x+\sqrt{2}\right)$ are the factors of given polynomial i.e., $\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=\left(x^2-2\right)$ is a factor of given polynomial.

$$\therefore p\left(x
ight)=2x^{4}-3x^{3}-3x^{2}+6x-2\Rightarrow p\left(x
ight)=\left(x^{2}-2
ight)\left(2x^{2}-3x+1
ight)$$

$$egin{aligned} \Rightarrow & p\left(x
ight) = \left(x^2-2
ight)\left[2x^2-2x-x+1
ight] \Rightarrow \ & p\left(x
ight) = \left(x^2-2
ight)\left[2x\left(x-1
ight)-1\left(x-1
ight)
ight] \Rightarrow \ & p\left(x
ight) = \left(x^2-2
ight)\left(x-1
ight)\left(2x-1
ight) \end{aligned}$$

 \therefore Other zeroes are x - 1 = 0 and 2x - 1 = 0 \Rightarrow x = 1 and $x = \frac{1}{2}$

4. a. $\frac{-b}{a}$

Explanation: If α and β are the zeroes of a quadratic polynomial

$$ax^2 + bx + c$$

: Sum of the zeroes of a quadratic polynomial $ax^2 + bx + c = \frac{-(\text{coefficient of } x)}{\text{coefficient of } x^2}$

then
$$\alpha + \beta = \frac{-b}{a}$$

5. b. 4

Explanation: Biquadratic polynomial is a polynomial of the fourth degree.

Biquadratic polynomial =
$$a(x^2)^2 + b(x)^2 + c$$
 = $ax^4 + bx^2 + c$

6. Let α and β be the zeros of the required polynomial.

Then,
$$(\alpha + \beta) = -5$$
 and $\alpha\beta = 6$

$$f(x) = x^2 - (\alpha + \beta)x + \alpha\beta = x^2 - (-5)x + 6$$

$$= x^2 + 5x + 6.$$

Hence, the required polynomial is $f(x) = x^2 + 5x + 6$.

7. Here sum of zeroes, S=0

Product of zeroes,
$$P=\sqrt{15}$$

Quadratic polynomial
$$p(x) = x^2 - (S)x + P$$

=
$$x^2-0x+\sqrt{15}$$

$$= x^2 + \sqrt{15}$$

8. We have, α and β are the roots of the quadratic polynomial. $f(x) = x^2 - 5x + 4$

Sum of zeros:
$$\alpha + \beta = -\frac{b}{a} = -\frac{\text{coefficient of } x}{\text{coefficient of } x^2}$$
 product of zeros: $\alpha\beta = \frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } x^2}$

product of zeros:
$$\alpha\beta = \frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } x^2}$$

Sum of the roots =
$$\alpha + \beta = 5$$

Product of the roots =
$$\alpha\beta$$
 = 4

So.

$$rac{1}{lpha}+rac{1}{eta}-2lphaeta=rac{eta+lpha}{lphaeta}-2lphaeta$$

$$5/4-2 imes 4=5/4-8$$
 = $(5-32)/4$ = $-27/4$

Hence,we get the result of
$$\frac{1}{lpha}+\frac{1}{eta}-2lphaeta$$
 = $-\frac{27}{4}$

9. Let be the two zeroes of the given polynomial.

Then,
$$lpha imes rac{1}{lpha} = rac{Constant_term}{Coefficient(x^2)}$$

$$\Rightarrow 1 = rac{k}{2} \ \Rightarrow k = 2$$

10. It is given that:

 \Rightarrow c = 1

$$p(x) = x^{2} - px - p - c$$
Here $a = 1$, $b = -p$ and $c = -p - c$

$$\therefore \quad \alpha + \beta = p \text{ and } \alpha\beta = (-p - c)$$

$$\therefore \quad (\alpha + 1)(\beta + 1) = 0$$

$$\Rightarrow \quad \alpha\beta + \alpha + \beta + 1 = 0$$

$$\Rightarrow -p - c + p + 1 = 0$$

11.

If the polynomial $2x^3 + 9x^2 - x - b$ is divisible by 2x + 3, then the remainder must be zero.

So,
$$15 - b = 0$$
, $b = 15$

12. Polynomial is x^2 - (k + 6)x + 2(2k - 1).

$$lpha + eta = -rac{\mathrm{b}}{\mathrm{a}} = rac{\mathrm{k}+6}{1} = \mathrm{k}+6$$
 and $lpha eta = rac{\mathrm{c}}{\mathrm{a}} = rac{2(2\mathrm{k}-1)}{1} = 4\mathrm{k}-2$ Now, $lpha + eta = rac{1}{2}lpha eta$ k + 6 = $rac{1}{2}(4\mathrm{k}-2)$ k + 6 = 2k - 1 k = 7

13. Compare $f(x) = 5x^2 - 7x + 1$ with $ax^2 + bx + c$ we get,

$$a = 5$$
, $b = -7$ and $c = 1$

Since α and β are the zeros of $5x^2$ - 7x + 1, we have

$$\alpha + \beta = -\frac{(b)}{a} = -\frac{(-7)}{5} = \frac{7}{5}$$
$$\alpha \beta = \frac{c}{a} = \frac{1}{5}$$

$$lphaeta = rac{c}{a} = rac{1}{5}$$
 $\therefore rac{1}{lpha} + rac{1}{eta} = rac{eta+lpha}{lphaeta}$

$$= \frac{\frac{7}{5}}{\frac{1}{1}}$$

$$= \frac{\frac{7}{5}}{\frac{1}{5}}$$
$$= \frac{7}{5} \times \frac{5}{1}$$

14. Here it is given that the zeros of f(x)= $3x^2$ -4x+1 are α and β

$$\alpha + \beta = -\frac{b}{a} = -\left(-\frac{4}{3}\right) = \frac{4}{3}$$
 and $\alpha\beta = \frac{c}{a} = \frac{1}{3}$

Let S and P denote respectively the sum and product of the zeros of the polynomial whose zeroes are $\frac{\alpha^2}{\beta}$ and $\frac{\beta^2}{\alpha}$, then

$$S = \frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta} = \frac{(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)}{\alpha\beta} = \frac{\left(\frac{4}{3}\right)^3 - 3\times\frac{1}{3}\times\frac{4}{3}}{\frac{1}{3}} = \frac{28}{9} \dots (1)$$

and, P =
$$\frac{\alpha^2}{\beta} \times \frac{\beta^2}{\alpha} = \alpha\beta = \frac{1}{3}$$
....(2)

Hence the polynomial with zeros $\frac{\alpha^2}{\beta}$ and $\frac{\beta^2}{\alpha}$ is

$$g(x)=x^2-Px+S=0$$

putting values of P and S from (1) and (2) we get the polynomial

$$g(x)=x^2-\frac{28}{9}x+\frac{1}{3}$$

or
$$g(x) = 9x^2 - 28x + 3$$

15. The given polynomial is:

$$f(x) = 2x^3 - x^2 - 4x + 2$$
.

It is given that the two zeroes of the above polynomial are $\sqrt{2}$ and - $\sqrt{2}$

Therefore,
$$(x - \sqrt{2})(x + \sqrt{2}) = (x^2 - 2)$$
 is a factor of $f(x)$.

Now we divide (x) = $2x^3 - x^2 - 4x + 2$ by ($x^2 - 2$), we obtain

Where quotient = (2x - 1)

$$f(x) = 0 \Rightarrow (x^2 - 2)(2x - 1) = 0$$

$$\Rightarrow$$
 (x - $\sqrt{2}$) (x + $\sqrt{2}$)(2x - 1) = 0

$$\Rightarrow$$
 (x - $\sqrt{2}$) = 0 or (x + $\sqrt{2}$) = 0 or (2 x -1) = 0

$$\Rightarrow$$
 x = $\sqrt{2}$ or x = - $\sqrt{2}$ or x = $\frac{1}{2}$.

Hence, all zeros of f(x) are $\sqrt{2}$, $-\sqrt{2}$ and $\frac{1}{2}$.

16.
$$p(x) = 5x^2 + 8x - 4 = 0$$

$$=5x^2 + 10x - 2x - 4 = 0$$

$$= 5x(x + 2) - 2(x + 2) = 0$$

$$=(x + 2)(5x - 2) = 0$$

Hence, zeroes are -2 and $\frac{2}{5}$

Verification: Sum of zeroes =
$$-2 + \frac{2}{5} = \frac{-8}{5}$$

Product of zeroes =
$$(-2) \times \left(\frac{2}{5}\right) = \frac{5}{5}$$

Again sum of zeroes = $-\frac{\text{Coeff. of } x}{\text{Coeff. of } x^2} = \frac{-8}{5}$

Product of zeroes = $\frac{\text{Constant term}}{\text{Coeff. of } x^2} = \frac{-4}{5}$

Again sum of zeroes =
$$-\frac{\text{Coeff. of } x}{\text{Coeff. of } x^2} = \frac{-8}{5}$$

Product of zeroes =
$$\frac{\text{Constant term}}{\text{Coeff, of } x^2} = \frac{-4}{5}$$

Verified.

17.
$$y^2 + \frac{3}{2}\sqrt{5}y - 5 = \frac{1}{2}(2y^2 + 3\sqrt{5}y - 10)$$

 $= \frac{1}{2}(2y^2 + 4\sqrt{5}y - \sqrt{5}y - 10)$
 $= \frac{1}{2}[2y(y + 2\sqrt{5}) - \sqrt{5}(y + 2\sqrt{5})]$
 $= \frac{1}{2}(y + 2\sqrt{5})(2y - \sqrt{5})$
 $\Rightarrow y = -2\sqrt{5}, \frac{\sqrt{5}}{2}$ are zeroes of the polynomial.

If given polynomial is
$$y^2 + \frac{3}{2}\sqrt{5}y$$
 - 5 then a = 1, b= $\frac{3}{2}\sqrt{5}$ and c = -5

Sum of zeroes =
$$-2\sqrt{5} + \frac{\sqrt[7]{5}}{2} = \frac{-3\sqrt{5}}{2}$$
(i)

Also,
$$\frac{-b}{a} = \frac{-3\sqrt{5}}{2}$$
 ---- (ii)

From (i) and (ii)

Sum of zeroes =
$$\frac{-b}{a}$$

Product of zeroes =
$$-2\sqrt{5}\times\frac{\sqrt{5}}{2}=-5$$
 (iii) Also, $\frac{c}{a}=\frac{-5}{1}=-5$ (iv) From (iii) and (iv)

Product of zeroes = $\frac{c}{a}$

18. As $2 \pm \sqrt{3}$ are the zeroes of p(x), so x - $(2 \pm \sqrt{3})$ are the factors of p(x) and the product of factors,

$$\begin{aligned} & \{x - (2 + \sqrt{3})\} \{x - (2 - \sqrt{3})\} \\ &= \{(x - 2) - \sqrt{3}\} \{(x - 2) + \sqrt{3}\} \\ &= (x - 2)^2 - (\sqrt{3})^2 \\ &= x^2 - 4x + 1 \end{aligned}$$

Dividing p(x) by $x^2 - 4x + 1$

$$x^{2}-2x-35$$

$$x^{2}-4x+1)x^{4}-6x^{3}-26x^{2}+138x-35$$

$$x^{4}-4x^{3}+x^{2}$$

$$-+-$$

$$-2x^{3}-27x^{2}+138x$$

$$-2x^{3}+8x^{2}-2x$$

$$+--+$$

$$-35x^{2}+140x-35$$

$$-35x^{2}+140x-35$$

$$+--+$$

$$0$$

Factorising $(x^2 - 2x - 35)$ we get

$$= (x + 5)(x - 7)$$

$$x = -5, 7$$

Hence, other two zeroes of p(x) are - 5 and 7.

19.

On factorising the quotient, we get

$$x^{2} - 2\sqrt{5}x - 15 = x^{2} - 3\sqrt{5}x + \sqrt{5}x - 15$$

$$= x(x - 3\sqrt{5}) + \sqrt{5}(x - 3\sqrt{5})$$

$$= (x + \sqrt{5})(x - 3\sqrt{5})$$

$$\therefore (x + \sqrt{5})(x - 3\sqrt{5}) = 0$$

$$\Rightarrow x = -\sqrt{5}, 3\sqrt{5}$$

Therefore, all the zeroes are $\sqrt{5}$, $-\sqrt{5}$ and $3\sqrt{5}$.

20.

$$x^{2}-4x + (8-k)$$

$$x^{2}-2x + k) x^{4}-6x^{3} + 16x^{2}-25x + 10$$

$$x^{4}-2x^{3} + kx^{2}$$

$$- + -$$

$$-4x^{3} + (16-k)x^{2}-25x + 10$$

$$-4x^{3} + 8x^{2} - 4kx$$

$$+ - +$$

$$(8-k)x^{2} - (25-4k)x + 10$$

$$(8-k)x^{2} - (16-2k)x + (8k-k^{2})$$

$$- + -$$

$$(2k-9)x + (10-8k+k^{2})$$

Given, remainder = x + a

On comparing the multiples of x

$$(2k - 9)x = 1$$

or, $2k - 9 = 1$ or $k = \frac{10}{2} = 5$

On putting this value of k into other portion of remainder, we get

and
$$a = 10 - 8k + k^2 = 10 - 40 + 25 = -5$$