CBSE Test Paper 01

Chapter 12 Area Related to Circle

1. The part of the circular region enclosed by a chord and the corresponding arc of a circle is called (1)
a. a segment
b. a diameter
c. a radius
d. a sector
2. If a line meets the circle in two distinct points, it is called (1)
a. a chord
b. a radius
c. secant
d. a tangent
3. Area of a sector of angle p (in degrees) of a circle with radius R is (1)
a. $\frac{p}{360} \times 2 \pi R$
b. $\frac{\mathrm{p}}{180} \times \pi \mathrm{R}^{2}$
c. $\frac{p}{180} \times 2 \pi \mathrm{R}$
d. $\frac{p}{720} \times 2 \pi R^{2}$
4. If ' r ' is the radius of a circle, then it's circumference is given by (1)
a. $2 \pi r$
b. None of these
C. πr
d. $2 \pi d$
5. The perimeter of a protractor is (1)
a. πr
b. $\pi r+2 r$
c. $\pi+r$
d. $\pi+2 r$
6. If circumference of a circle is 44 cm , then what will be the area of the circle? (1)
7. Find the area of circle that can be inscribed in a square of side 10 cm . (1)
8. In the given figure, AB is the diameter where $\mathrm{AP}=12 \mathrm{~cm}$ and $\mathrm{PB}=16 \mathrm{~cm}$. Taking the value of π as 3 , find the perimeter of the shaded region. (1)

9. If the perimeter of a semi-circular protactor is 36 cm , then find its diameter. (1)
10. What is the perimeter of a square which circumscribes a circle of radius a cm? (1)
11. On a square cardboard sheet of area $784 \mathrm{~cm}^{2}$, four circular plates of maximum size are placed such that each circular plate touches the other two plates and each side of the square sheet is tangent to circular plates. Find the area of the square sheet not covered by the circular plates. (2)
12. The circumference of a circle is 22 cm . Find the area of its quadrant. (2)
13. A sector of a circle of radius 4 cm contains an angle of 30°. Find the area of the sector. (2)
14. In the given figure, ABCD is a trapezium of area $24.5 \mathrm{~cm}^{2}$. If AD II $\mathrm{BC}, \angle D A B=90^{\circ}$, $\mathrm{AD}=10 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}$ and ABE is quadrant of a circle then find the area of the shaded region. (3)

15. The given figure depicts a racing track whose left and right ends are semi-circular.

The difference between the two inner parallel line segments is 60 m and they are each 106 m long. If the track is 10 m wide, find:

i. The distance around the track along its inner edge,
ii. The area of the track. (3)
16. A circular pond is 17.5 m in diameter. It is surrounded by a 2 m wide path. Find the cost of constructing the path at the rate of Rs 25 per m^{2}. (3)
17. A momento is made as shown in the figure. Its base PBCR is silver plated from the front side. Find the area which is silver plated. $\left(\pi=\frac{22}{7}\right)$

18. In Figure $A B C$ is a right-angled triangle at A. Find the area of the shaded region, if $A B$ $=6 \mathrm{~cm}, \mathrm{BC}=10 \mathrm{~cm}$ and I is the centre of incircle of $\triangle A B C$. (4)

19. A chord of a circle of radius 10 cm subtends a right angle at the center. Find the area of the corresponding: (Use $\pi=3.14$)
i. minor sector
ii. major sector
iii. minor segment
iv. major segment (4)
20. In the given figure, AB is diameter of circle, $\mathrm{AC}=6$ and $\mathrm{BC}=8 \mathrm{~cm}$. Find the area of the shaded region. $(\pi=3.14)$. (4)

CBSE Test Paper 01

Chapter 12 Area Related to Circle

Solution

1. a. a segment

The part of the circular region enclosed by a chord and the corresponding arc of a circle is called a segment.
2. c. secant

Explanation: A secant line, also simply called a secant, is a line meet two points in a circle.
3. d. $\frac{p}{720} \times 2 \pi R^{2}$

Explanation: Area of the sector of angle p of a circle with radius R

$$
\begin{aligned}
& =\frac{\theta}{360} \times \pi r^{2}=\frac{p}{360} \times \pi R^{2} \\
& =\frac{p}{2(360)} \times 2 \pi R^{2}=\frac{p}{720} \times 2 \pi R^{2}
\end{aligned}
$$

4. a. $2 \pi r$

Explanation: If the radius of a circle is given, the circumference or perimeter can be calculated using the formula below:-
Circumference $=2 \pi r$
5. b. $\pi r+2 r$

Explanation: Let radius of the protractor be $r \therefore$ Perimeter of protractor $=$
Perimeter of semicircle + Diameter of semicircle
\Rightarrow Perimeter of protractor $=\pi r+2 r$
6. Circumference of a circle $=44 \mathrm{~cm}$
$2 \pi r=44$
$2 \times \frac{22}{7} \times \mathrm{r}=44$
$\frac{44}{7} \times \mathrm{r}=44$
Radius of the circle $=\frac{44}{\frac{44}{7}}=7 \mathrm{~cm}$
Area of the circle $=\pi r^{2}=\frac{22}{7} \times 7 \times 7$
$=154 \mathrm{~cm}^{2}$.
So, Area of the circle is $154 \mathrm{~cm}^{2}$.
7. Side of square $=10 \mathrm{~cm}$

Side of square $=$ diameter of square $=10 \mathrm{~cm}$
Radius of the circle $=\frac{10}{2}=5 \mathrm{~cm}$
Area of the circle $=\pi \times r^{2}$
$=\pi \times(5)^{2}$
$=\pi \times 5 \times 5$
$=25 \pi \mathrm{~cm}^{2}$
8.

In $\triangle \mathrm{APB}$
$\mathrm{AB}^{2}=\mathrm{AP}^{2}+\mathrm{PB}^{2}$
$A B=\sqrt{(16)^{2}+(12)^{2}}$ (From Pythagoras theorem)
$=\sqrt{256+144}$
$=\sqrt{400}$
$=20 \mathrm{~cm}$
\therefore Radius of circle $=\frac{20}{2}=10 \mathrm{~cm}$.
Perimeter of shaded region
$=\pi r+A P+P B$
$=3 \times 10+12+16$
$=30+12+16$
$=58 \mathrm{~cm}$.
9. Perimeter of a semi-circular protactor $=$ Perimeter of a semi-circle $=\frac{1}{2}$ (circumference of circle $)+$ diameter $=\frac{1}{2}($ circumference of circle $)+2 \times$ radius $=(2 r+\pi r) c m$
$\Rightarrow 2 r+\pi r=36$ [Given, perimeter of semi-cicular protactor $=36$]
$\Rightarrow r=\frac{36}{2+\pi}$
$\Rightarrow r=7 \mathrm{~cm}$
Hence, diameter of semi-circular protactor $=2 \mathrm{r}=2(7)=14 \mathrm{~cm}$
10. When a square circumscribes a circle, the radius of the circle is half the length of the square.
Therefore, if the radius of the circumscribed circle is a, the diameter will be 2 a . It is this diameter that is equal to the length of the square.
Therefore, the length of the square is 2 a cm .
Then area of a square $=4 \times$ length
$=4 \times 2 \mathrm{acm}$
$=8 \mathrm{a} \mathrm{cm}$
11. Let the radius of each circular plate be r cm . Then,

Length of each side of the square sheet $=4 \mathrm{rcm}$.
\therefore Area of the square cardboard sheet $=(4 \mathrm{r} \times 4 \mathrm{r}) \mathrm{cm}^{2}=16 \mathrm{r}^{2} \mathrm{~cm}^{2}$
But, the area of the cardboard sheet is given to be $784 \mathrm{~cm}^{2}$
$\therefore 16 r^{2}=784 \Rightarrow r^{2}=49$
$\Rightarrow \mathrm{r}=7$
Area of one circular plate $=\pi r^{2}=\frac{22}{7} \times 7^{2} \mathrm{~cm}^{2}=154 \mathrm{~cm}$
\therefore Area of four circular plates $=4 \times 154 \mathrm{~cm}^{2}=616 \mathrm{~cm}^{2}$
\therefore Uncovered area of the square sheet $=(784-616) \mathrm{cm}^{2}=168 \mathrm{~cm}^{2}$
12. Suppose r be the radius of a circle

Circumference of a circle $=22 \mathrm{~cm}$
$\Rightarrow 2 \pi r=22$
$\Rightarrow 2 \times \frac{22}{7} \times r=22$
$\Rightarrow r=\frac{7}{2} \mathrm{~cm}$
Area of the quadrant of a circle $=\frac{1}{4} \times \pi \times r^{2}$
$=\left(\frac{1}{4} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}\right) \mathrm{cm}^{2}$
$=\frac{77}{8} \mathrm{~cm}^{2}$
13. Radius of cirlce $=4 \mathrm{~cm}$
$\theta=30^{\circ}$
\therefore Area of sector $=\frac{\theta}{360^{\circ}} \times \pi r^{2}$
$=\frac{30^{\circ}}{360^{\circ}} \times \pi \times 4 \times 4$
$=\frac{4 \pi}{3} \mathrm{~cm}^{2}$
14. Area of the trapezium $A B C D$
$=\frac{1}{2}$ (sum of parallel sides) \times distance between them
$=\frac{1}{2}(A D+B C) \times A B$
$\Rightarrow 24.5=\frac{1}{2} \times(10+4) \times A B$
$\Rightarrow 24.5$
$=7 \mathrm{AB}$
$\Rightarrow A B=\frac{24.5}{7}$
$\Rightarrow A B=3.5 \mathrm{~cm}$
\Rightarrow Radius of a quadrant $\mathrm{ABE}=3.5 \mathrm{~cm}$
\therefore Area of a quadrant $\mathrm{ABE}=\frac{1}{4} \pi r^{2}$
$=\frac{1}{4} \times \frac{22}{7} \times 3.5 \times 3.5$
$=9.625 \mathrm{~cm}^{2}$
Now, Area of the shaded region
= Area of the trapezium ABCD - Area of a quadrant ABE
= 24.5-9.625
$=14.875 \mathrm{~cm}^{2}$
15. i. The distance around the track along the inner edge $=106+106+(\pi \times 30+\pi \times$
30)

$$
=212+\frac{22}{7} \times 60=212+\frac{1320}{7}=\frac{2807}{7} m
$$

ii. The area of the track $=106 \times 80-106 \times 60+2 \times \frac{1}{2} \times \pi\left[40^{2}-30^{2}\right]$

$$
\begin{aligned}
& =106 \times 20+\pi(70) \times(10) \\
& =2120+700 \times \frac{22}{7}=2120+2200=4320 \mathrm{~m}^{2}
\end{aligned}
$$

16. \therefore Radius of a pond $=\frac{17.5}{2}=8.75$
\therefore Area of a pond $=\pi(8.75)^{2} s q . m$
Radius of a circle including path $=8.75+2=10.75 \mathrm{~m}$
\therefore According to question,
Area of the path = Area of a circle including path - Area of a pond
$=\pi(10.75)^{2}-\pi(8.75)^{2}$
$=\pi\left[(10.75)^{2}-(8.75)^{2}\right]$
$=\frac{22}{7}[(10.75+8.75)(10.75-8.75)]$
$=\frac{22}{7}[19.5 \times 2]$
$=\frac{22}{7} \times 39$
$=\frac{858}{7} \mathrm{sq} . \mathrm{m}$
$=122.5 \mathrm{sq} \cdot \mathrm{m}$
Cost of constructing the path $=25 \times 122.5=$ Rs. 3062.50
17.

Base $=7+3=10 \mathrm{~cm}$ and height $=7+3=10 \mathrm{~cm}$
From the given figure
Area of right-angled $\triangle A B C=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times 10 \times 10$
$=50 \mathrm{~cm}^{2}$
Area of quadrant APR of the circle of radius 7 cm
$=\frac{1}{4} \times \pi \times(7)^{2}$
Area of quadrant $=\frac{1}{4} \times \frac{22}{7} \times 49=38.5 \mathrm{~cm}^{2}$

Area of base PBCR $=$ Area of $\triangle \mathrm{ABC}-$ Area of quadrant APR
$=50-38.5=11.5 \mathrm{~cm}^{2}$.
So, Area of shaded portion is $11.5 \mathrm{~cm}^{2}$.
18. Applying Pythagoras theorem in $\triangle A B C$, we obtain

$$
\begin{aligned}
& \mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2} \\
& \Rightarrow \mathrm{AC}^{2}=\mathrm{BC}^{2}-\mathrm{AB}^{2} \\
& \Rightarrow \mathrm{AC}^{2}=100-36=64 \\
& \Rightarrow \mathrm{AC}=8 \mathrm{~cm}
\end{aligned}
$$

\therefore Area of $\triangle A B C=\frac{1}{2} \times A B \times A C=\frac{1}{2} \times 6 \times 8 \mathrm{~cm}^{2}=24 \mathrm{~cm}^{2}$

Let r cm be the radius of the incircle, (circle inscribed in $\triangle A B C$). We observe that:
Area of $\triangle A B C=$ Area of $\triangle I B C+$ Area of $\triangle I C A+$ Area of $\triangle I A B$
$\Rightarrow \quad 24=\frac{1}{2}(B C \times r)+\frac{1}{2}(C A \times r)+\frac{1}{2}(A B \times r)$
$\Rightarrow \quad 24=\frac{1}{2} r(B C+C A+A B)$
$\Rightarrow \quad 24=\frac{1}{2} \times r \times(10+8+6)$
$\Rightarrow 24=12 \mathrm{r}$
$\Rightarrow \mathrm{r}=2$

Let A be the area of the shaded region. Then,
$\mathrm{A}=$ Area of $\triangle A B C$ - Area of the incircle
$\Rightarrow \quad A=24-\pi r^{2}=\left(24-\frac{22}{7} \times 4\right) \mathrm{cm}^{2}=\frac{80}{7} \mathrm{~cm}^{2}$
19.

i. Area of minor sector $=\frac{\theta}{360} \pi \mathrm{r}^{2}$
$=\frac{90}{360}(3.14)(10)^{2}$
$=\frac{1}{4} \times 3.14 \times 100$
$=\frac{314}{4}$
$=78.50=78.5 \mathrm{~cm}^{2}$
ii. Area of major sector $=$ Area of circle - Area of minor sector

$$
\begin{aligned}
& =\pi(10)^{2}-\frac{90}{360} \pi(10)^{2}=3.14(100)-\frac{1}{4}(3.14)(100) \\
& =314-78.50=235.5 \mathrm{~cm}^{2}
\end{aligned}
$$

iii. We know that area of minor segment
$=$ Area of minor sector $\mathrm{OAB}-$ Area of $\triangle \mathrm{OAB}$
\because area of $\triangle \mathrm{OAB}=\frac{1}{2}(O A)(O B) \sin \angle A O B$
$=\frac{1}{2}(O A)(O B)\left(\because \angle A O B=90^{\circ}\right)$
Area of sector $=\frac{\theta}{360} \pi r^{2}$
$=\frac{1}{4}(3.14)(100)-50=25(3.14)-50=78.50-50=28.5 \mathrm{~cm}^{2}$
iv. Area of major segment = Area of the circle - Area of minor segment
$=\pi(10)^{2}-28.5$
$=100(3.14)-28.5$
$=314-28.5=285.5 \mathrm{~cm}^{2}$
20.

Identify the figure as a circle, and a right-angled triangle (and semicircle, segment also) since AOB is diameter and angle in semicircle is 90°.

Therefore, $\angle \mathrm{C}=90^{\circ}$
In right-angled $\triangle \mathrm{ABC}$,
$\mathrm{b}=$ base $=\mathrm{BC}=8 \mathrm{~cm}$
$\mathrm{a}=$ altitude $=\mathrm{AC}=6 \mathrm{~cm}$

Therefore,by Pythagoras theorem in right $\triangle \mathrm{ABC}$,
$\mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{AC}^{2}$
$=8^{2}+6^{2}=64+36$
$\Rightarrow \mathrm{AB}^{2}=100 \mathrm{~cm}$
$\Rightarrow \mathrm{AB}=10 \mathrm{~cm}$
Therefore, $\mathrm{r}=\frac{10}{2}=5 \mathrm{~cm}$
Therefore, Area of shaded region $=$ Area of circle - Area of right $\triangle A B C$
$=\pi r^{2}-\frac{1}{2}$ Base \times Alt.
$=3.14 \times 5 \times 5-\frac{1}{2} \times 8 \times 6$
$=3.14 \times 25-8 \times 3=(78.50-24) \mathrm{cm}^{2}=54.50 \mathrm{~cm}^{2}$
Therefore, Area of shaded region $=54.50 \mathrm{~cm}^{2}$

