CBSE Test Paper 02

Chapter 11 Construction

1. Point E bisects the line segment $P Q$ in the ratio: (1)
a. $3: 5$
b. $3: 6$
c. $2: 3$
d. $1: 1$
2. If PT, QT are two tangents to a circle with centre O such that $\angle P T Q=42^{\circ}$, then $\angle P O Q=(1)$

a. 48°
b. 84°
c. 42°
d. 138^{0}
3. In division of a line segment $A B$, any ray $A X$ making angle with $A B$ is: (1)
a. Right angle
b. Acute angle
c. Obtuse angle
d. Any arbitrary angle
4. By geometrical construction, which of the following is possible to divide a line segment in the given ratio? (1)
a. $(\sqrt{3}-2):(\sqrt{3}+2)$
b. $(2+\sqrt{3}):(2-\sqrt{3})$
c. $\sqrt{6}: 2$
d. $\sqrt{5}: \frac{1}{\sqrt{5}}$
5. To draw a pair of tangents to a circle which are inclined to each other at an angle of 80°, it is required to draw tangents at endpoints of those two radii of the circle, the
angle between them should be (1)
a. 90°
b. 100°
c. 60°
d. 135°
6. To divide a line segment AB in the ratio 5: 7, first a ray AX is drawn so that $\angle B A X$ is an acute angle and then at equal distances points are marked on the ray AX such that the minimum number of these points is (1)
a. 8
b. 11
c. 10
d. 12
7. To draw a pair tangents to a circle which are inclined to each other at an angle of 70°, it is required to draw tangents at endpoints of those two radii of the circle, the angle between them should be: (1)
a. 90°
b. 120°
c. 20°
d. 110^{0}
8. To divide a line segment AB in the ratio $4: 7$, a ray AX is drawn first such that $\angle B A X$ is an acute angle and then points $A_{1}, A_{2}, A_{3} \ldots \ldots$. are located at equal distances on the ray AX and the point B is joined to: (1)
a. A_{12}
b. A_{10}
c. A_{9}
d. A_{11}
9. When construction of a triangle similar to a given triangle in the scale factor $\frac{5}{3}$, then what is the nature of a given triangle? (1)
10. To construct a triangle similar to a given $\triangle A B C$ with its sides $\frac{8}{5}$ times of the corresponding sides of $\triangle A B C$, draw a ray BX such that $\angle C B X$ is an acute angle and X is on the opposite side of A with respect to BC . How many minimum number of
points to be located at equal distances on ray BX? (1)
11. In drawing a triangle, if $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=2 \mathrm{~cm}$ and $\mathrm{AC}=6 \mathrm{~cm}$. What is the possibility that a triangle cannot be drawn? (1)
12. Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at 60°. (2)
13. Construct a triangle similar to a given equilateral $\triangle \mathrm{PQR}$ with side 5 cm such that each of its side is $\frac{6}{7}$ of the corresponding sides of $\triangle P Q R$. (2)
14. Draw a circle of radius 4 cm with centre O. Draw a diameter POQ. Through P or Q draw a tangent to the circle. (2)
15. Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its length. Also, verify the measurement by actual calculation. (2)
16. Draw a triangle ABC with sides $\mathrm{BC}=6.3 \mathrm{~cm}, \mathrm{AB}=5.2 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$. Then construct a triangle whose sides are times $\frac{4}{3}$ the corresponding sides of $\triangle A B C$ (2)
17. Construct a $\triangle \mathrm{ABC}$ in which $\mathrm{BC}=8 \mathrm{~cm}, \angle B=45^{\circ}$ and $\angle C=30^{\circ}$. Construct another triangle, similar to $\triangle \mathrm{ABC}$ such that its sides are $\frac{3}{4}$ of corresponding sides of \triangle ABC. (3)
18. Draw a $\triangle A B C$ in which $\mathrm{BC}=6 \mathrm{~cm}, \mathrm{AB}=4 \mathrm{~cm}$ and $\mathrm{AC}=5 \mathrm{~cm}$. Draw a triangle similar to $\Delta A B C$ with its sides equal to $(3 / 4)^{\text {th }}$ of the corresponding sides of $\triangle A B C$. (3)
19. Construct a rhombus ABCD in which $\mathrm{AB}=4 \mathrm{~cm}$ and $\triangle \mathrm{ABC}=60^{\circ}$. Divide it into two triangles $A B C$ and $A D C$. Construct the triangle $A B^{\prime} C^{\prime}$ similar to $\triangle A B C$ with scale factor $\frac{2}{3}$. Draw a line segment $C D^{\prime}$ parallel to CD , where D^{\prime} lies on AD . Is $\mathrm{AB}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ a rhombus? Give reasons. (3)
20. Take a point O on the plane of the paper. With O as centre, draw a circle of radius 3 cm . Take a point P on this circle and draw a tangent at P . (3)

CBSE Test Paper 02

Chapter 11 Construction

Solution

1. d. 1:1

Explanation: We know that point E bisects line segment $P Q$ so,
$P E=Q E$
or, $\frac{P E}{Q E}=\frac{1}{1}$
or, $P E: Q E=1: 1$
2. d. 138°

Explanation: As, OPTQ is a quadrilateral the sum of four angles are $\angle O P T$ and $\angle O Q T$ are 90° as tangents makes 90° with radius of their touching points. So.
$\angle P O Q=((360-(90+90+42))$
$\Rightarrow \angle P O Q=\left(360^{\circ}-212^{\circ}\right)=138^{\circ}$
3. b. Acute angle

Explanation: In division of a line segment AB , any ray AX making angle with $A B$ is an acute angle always because of path of ray.
4. d. $\sqrt{5}: \frac{1}{\sqrt{5}}$

Explanation: A line segment can be divided into the ratio $\sqrt{5}: \frac{1}{\sqrt{5}}$ because the ratio should be whole numbers.
$\Rightarrow \sqrt{5}: \frac{1}{\sqrt{5}}=\frac{\sqrt{5} \times \sqrt{5}}{1}=\frac{5}{1}$
$=5: 1$
5. b. 100°

Explanation: As the sum of four angles of a quadrilateral is 360° and each of, makes 90°
Then the angle at the centre $((360-(90+90+80))$
$=360-260$
$=100^{\circ}$
6. d. 12

Explanation: According to the question, the minimum number of those points which are to be marked should be (Numerator + Denominator) i.e., $5+7=12$
7. d. 110°

Explanation:

According to the question, the angle between the radii should be $180^{\circ}-70^{\circ}=$ 110^{0}
8. d. A_{11}

Explanation: According to the question, point B is joined to A11.

9. When construction of a triangle similar to a given triangle in the scale factor $\frac{5}{3}$, then the nature of a given triangle is new triangle is bigger than the original traingle.
10. Let's take corresponding sides of the new triangle be $\frac{m}{n}$

The minimum number of points to be located at an equal distance is equal to the greater of m and n, in $\frac{m}{n}$.
Here, $\frac{m}{n}=\frac{8}{5}$ and $8>5$.
So, the minimum number of points to be located at equal distances on ray BX is 8 .
11. When $A B+B C<A C$, triangle cannot be drawn, because in any triangle, sum of any two sides is greater than the third side.
$3 \mathrm{~cm}+2 \mathrm{~cm}<6 \mathrm{~cm}$.
Hence $\triangle \mathrm{ABC}$ cannot be drawn.
12.

Steps of construction:
i. Draw a circle with centre O and radius 5 cm .
ii. Draw any radius OT.
iii. Construct. $\angle T O T^{\prime}=180^{\circ}-60^{\circ}=120^{\circ}$
iv. Draw and $T P \perp O T T^{\prime} P \perp O T^{\prime}$. Then PT^{\prime} and PT are the two required tangents such that. $\angle T P T^{\prime}=60^{\circ}$ Here, $\mathrm{PT}=\mathrm{PT}^{\prime}$.
13. We have to Construct a triangle similar to a given equilateral $\triangle P Q R$ with side 5 cm such that each of its side is $\frac{6}{7}$ of the corresponding sides of $\triangle P Q R$. We write the steps of construction as follows:
Steps of construction :
i. Draw a line segment $\mathrm{QR}=5 \mathrm{~cm}$.
ii. With Q as centre and radius $=\mathrm{PQ}=5 \mathrm{~cm}$, draw an arc.
iii. With R as centre and radius $=\mathrm{PR}=5 \mathrm{~cm}$, draw another arc meeting the arc drawn in step 2 at the point P.
iv. Join $P Q$ and $P R$ to obtain $\triangle P Q R$.
v. Below QR , construct an acute $\angle \mathrm{RQX}$,
vi. Along QX , mark off seven points $\mathrm{Q}_{1}, \mathrm{Q}_{2}$, \qquad Q_{7} such that $\mathrm{QQ}_{1}=\mathrm{Q}_{1} \mathrm{Q}_{2}=\mathrm{Q}_{2} \mathrm{Q}_{3}$ \qquad $=$
$\mathrm{Q}_{6} \mathrm{Q}_{7}$
vii. Join $Q_{7} R$.
viii. Draw $\mathrm{Q}_{6} \mathrm{R}^{\prime}| | \mathrm{Q}_{7} \mathrm{R}$.
ix. From R' draw R'P' || RP.

Hence, $P^{\prime} Q R$ ' is the required triangle.

14.

Steps of construction:
i. Draw a circle of radius 4 cm .
ii. Draw diameter POQ.
iii. Construct. $\angle P Q T=90^{\circ}$
iv. Produce PQ to T^{\prime}, then TQT' is the required tangent at the point Q .
15. Required: To construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its length, also to verify the measurement by actual by actual calculation.

Steps of construction :
i. join PO and bisect it, Let M be the mid-point of PO.
ii. Taking M as centre and MO as radius, draw a circle. Let it intersect the given circle at the point Q and R .
iii. Join PQ

Then PQ is the required tangent. By measurement, $\mathrm{PQ}=4.5 \mathrm{~cm}$ By actual calculation,
$\mathrm{PQ}=\sqrt{\mathrm{OP}^{2}-\mathrm{OQ}^{2}}$ [By Pythagoras Theorem]
$=\sqrt{(6)^{2}-(4)^{2}}$
$=\sqrt{36-16}=\sqrt{20}$
$=4.47 \mathrm{~cm}$
Justification: Join OQ . Then $\angle \mathrm{PQO}$ is an angle in the semicircle and, therefore, $\angle P Q O=90^{\circ}$
$\Rightarrow \quad \mathrm{PQ} \perp 0 Q$
Since OQ is a radius of the given circle, PQ has to be a tangent to the circle.
16.

Steps of construction:
i. Draw a line segment $\mathrm{BC}=6.3 \mathrm{~cm}$.
ii. At B make $\angle C B X=60^{\circ}$
iii. With B as centre and radius equal to 5.2 cm , draw an arc intersecting BX at A.
iv. Join $A C$, then $\triangle A B C$ is the required triangle.
v. Draw any ray by making an acute angle with BC on the opposite side to the vertex A.
vi. Locate the points B_{1}, B_{2}, B_{3} and B_{4} on $B Y$ so that $B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B 4$.
vii. Join B_{3} to C and draw a line through B_{4} parallel to $B_{3} C$ intersecting the extended line segment BC at C^{\prime}.
viii. Draw a line through C^{\prime} parallel to CA intersecting the extended line segment $B A$ at A'.
Thus, $\triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required triangle.
17.

Steps of construction:
i. Draw a line segment $\mathrm{BC}=8 \mathrm{~cm}$.
ii. Construct $\angle B=45^{\circ}$ at point B.
iii. Again construct $\angle C=30^{\circ}$ at point.
iv. Line segment from the angles B and C, when produced, meet at A.
v. Hence, $\triangle \mathrm{ABC}$ is constructed.
vi. Now, Draw an acute angle CBX opposite to point A.
vii. Take points $B_{1}, B_{2}, B_{3} \& B_{4}$ at ray $B X$ such that $B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}=\frac{1}{4} B B_{4} \ldots$.(1)
viii. Join $\mathrm{B}_{4} \mathrm{C}$
ix. Draw $\mathrm{B}_{3} \mathrm{C}^{\prime}$ parallel to $\mathrm{B}_{4} \mathrm{C}$ meeting BC at C^{\prime}.
x. Draw C'A' parallel to CA, meeting BA at A'.
xi. $A^{\prime} B^{\prime} C^{\prime}$ is required triangle.
18. Steps of construction

i. Draw a line segment BC of 6 cm .
ii. With centres B and C, and radii 4 cm and 6 cm respectively draw two arcs which intersect each other at A .
iii. Join AB and AC .
iv. At B , draw $\angle C B X$ of any measure.
v. Starting from B, cut 4 equal parts on $B X$ such that $B X_{1}=X_{1} X_{2}=X_{2} X_{3}=X_{3} X_{4}$
vi. Join $\mathrm{X}_{4} \mathrm{C}$
vii. Through X_{3}, draw $X_{3} Q \| X_{4} C$
viii. Through Q , draw $\mathrm{QP} \| \mathrm{CA}$

$$
\therefore \triangle P B Q \sim \triangle A B C
$$

19. The steps of construction :
a. The rhombus ABCD is drawn in which $\mathrm{AB}=4 \mathrm{~cm}$ and $\angle \mathrm{ABC}=60^{\circ}$.
b. Join AC . ABCD is divided into two triangles ABC and ADC .
c. Construct triangle $A^{\prime} C^{\prime}$ similar to $A B C$ with scale factor $\frac{2}{3}$.
d. Draw the line segment $C^{\prime} D^{\prime}$ parallel to $C D$.

It can be observed that:

$$
\begin{aligned}
& \frac{A B^{\prime}}{A B}=\frac{2}{3}=\frac{A C^{\prime}}{A C} \\
& \text { Also, } \frac{A C^{\prime}}{A C}=\frac{C D^{\prime}}{C D} \\
& =\frac{A D^{\prime}}{A D}=\frac{2}{3}
\end{aligned}
$$

Therefore, $\mathrm{AB}^{\prime}=\mathrm{B}^{\prime} \mathrm{C}=\mathrm{CD}^{\prime}=\mathrm{AD}^{\prime}=\frac{2}{3} \mathrm{AB}$

20. We follow the following steps:

Steps of construction
STEP I Take a point 0 on the plane of the paper and draw a circle of given radius 3 cm.

STEP II Take any point P on the circle and join OP.
STEP III Construct $\angle O P T=90^{\circ}$.
STEP IV Produce TP to T ' to obtain the required tangent TPT '.

