Chapter 10 Circles

1. If O is the centre of a circle, $P Q$ is a chord and tangent $P R$ at P makes an angle of 60° with $P Q$, then $\angle P O Q$ is equal to (1)

a. 110°
b. 120°
c. 100°
d. 90°
2. In the given figure, if $\mathrm{OQ}=3 \mathrm{~cm}, \mathrm{OP}=5 \mathrm{~m}$, then the length of PR is (1)

a. 4 cm
b. 3 cm
c. 5 cm
d. 6 cm
3. In figure, PA and PB are two tangents drawn from an external point P to a circle with centre C and radius 4 cm . If $\mathrm{PA} \perp \mathrm{PB}$, then the length of each tangent is: (1)

a. 5 cm
b. 3 cm
c. 4 cm
d. 8 cm
4. In the given figure, O is the centre of the circle with radius 10 cm . If $\mathrm{AB} \| \mathrm{CD}, \mathrm{AB}=16$ cm and $\mathrm{CD}=12 \mathrm{~cm}$, the distance between the two chords AB and CD is : (1)
a. 12 cm
b. 20 cm
c. 16 cm
d. 14 cm
5. The length of tangent $P Q$, from an external point Q is 24 cm . If the distance of the point Q from the centre is 25 cm , then the diameter of the circle is (1)

a. 15 cm
b. 14 cm
c. 12 cm
d. 7 cm
6. In the given figure, AB is a chord of the circle and AOC is its diameter such that $\angle \mathrm{ACB}=$ 50°. If AT is the tangent to the circle at the point A, find $\angle B A T$ (1)

7. What term will you use for a line which intersect a circle at two distinct points? (1)
8. In the fig. there are two concentric circles with centre O. PRT and PQS are tangents to the inner circle from a point P lying on the outer circle. If $P R=5 \mathrm{~cm}$ find the length of PS . (1)

9. A triangle ABC is drawn to circumscribe a circle. If $\mathrm{AB}=13 \mathrm{~cm}, \mathrm{BC}=14 \mathrm{~cm}$ and $\mathrm{AE}=7 \mathrm{~cm}$, then find $A C$. (1)

10. Find the distance between two parallel tangents of a circle of radius 3 cm . (1)

11. In the given figure, $T P$ and $T Q$ are tangents from T to the circle with centre O and R is any point on the circle. If $A B$ is a tangent to the circle at R, prove that $T A+A R=T B+B R$. (2)

12. In figure, if $\mathrm{OL}=5 \mathrm{~cm}, \mathrm{OA}=13 \mathrm{~cm}$, then length of AB is (2)
13. In figure, if TP and TQ are the two tangents to a circle with centre O so that $\angle \mathrm{POQ}=110^{\circ}$, then find $\angle \mathrm{PTQ}$. (2)

14. From an external point P, tangents $P A$ and $P B$ are drawn to a circle with centre O. At one point E on the circle tangent is drawn which intersects PA and PB at C and D respectively. If $P A=14 \mathrm{~cm}$, find the perimeter of $\triangle P C D$. (3)
15. In the given figure, O is the centre of the circle. Determine $\angle A Q B$ and $\angle A M B$, if $P A$ and PB are tangents (3)

16. Prove that the line segment joining the points of contact of two parallel tangents of a circle, passes through its centre. (3)
17. The tangent at a point C of a circle and a diameter $A B$ when extended intersect at P. If $\angle \mathrm{PCA}=110^{\circ}$, find $\angle \mathrm{CBA}$.
[Hint: Join C with centre O]. (3)

18. In figure, the sides $A B, B C$ and $C A$ of triangle $A B C$ touch a circle with centre O and radius r at P, Q and R respectively. Prove that

$$
\text { i. } \mathrm{AB}+\mathrm{CQ}=\mathrm{AC}+\mathrm{BQ}
$$

ii. $\operatorname{Area}(\mathrm{ABC})=\frac{1}{2}$ (perimeter of $\left.\triangle \mathrm{ABC}\right) \times \mathrm{r}(4)$

19. In Fig. there are two concentric circles with centre O of radii 5 cm and 3 cm . From an external point P , tangents PA and PB are drawn to these circles. If $\mathrm{AP}=12 \mathrm{~cm}$, find the length of BP. (4)

20. In fig. two tangents AB and AC are drawn to a circle with centre O such that $\angle B A C=120^{\circ}$. Prove that $\mathrm{OA}=2 \mathrm{AB}$. (4)

CBSE Test Paper 02
 Chapter 10 Circles

Soluiton

1. b. 120°

Explanation: Here $\angle \mathrm{RPO}=90^{\circ}$
$\angle \mathrm{RPQ}=60^{\circ}$ (given)
$\therefore \angle \mathrm{OPQ}=90^{\circ}-60^{\circ}=30^{\circ} \angle \mathrm{PQO}=30^{\circ}$ Also [Opposite angles of equal radii] Now, In triangle OPQ ,
$\angle \mathrm{OPQ}+\angle \mathrm{PQO}+\angle \mathrm{QOP}=180^{\circ}$
$\Rightarrow 30^{\circ}+30^{\circ}+\angle \mathrm{QOP}=180^{\circ}$
$\Rightarrow \angle \mathrm{QOP}=120^{\circ}$
2. a. 4 cm

Explanation: Here $\angle \mathrm{Q}=90^{\circ}$ [Angle between tangent and radius through the point of contact]

Now, in right angled triangle OPQ,

$$
\begin{aligned}
& \mathrm{OP}^{2}=\mathrm{OQ}^{2}+\mathrm{PQ}^{2} \\
& \Rightarrow(5)^{2}=(3)^{2}+\mathrm{PQ}^{2} \\
& \Rightarrow \mathrm{PQ}^{2}=25-9=16 \\
& \Rightarrow \mathrm{PQ}=4 \mathrm{~cm}
\end{aligned}
$$

But PQ = PR [Tangents from one point to a circle are equal]
Therefore, $\mathrm{PR}=4 \mathrm{~cm}$
3. c. 4 cm

Construction: Joined AC and BC . Here $\mathrm{CA} \perp \mathrm{AP}$ and $\mathrm{CB} \perp \mathrm{BP}$ and $\mathrm{PA} \perp \mathrm{PB}$ Also $\mathrm{AP}=\mathrm{PB}$

Therefore, BPAC is a square. $\Rightarrow \mathrm{AP}=\mathrm{PB}=\mathrm{BC}=4 \mathrm{~cm}$
4. d. 14 cm

Explanation:

Let $O P$ be the perpendicular to chord $A B$ and P bisects the chord $A B$ and $O Q$ be the perpendicular to chord $C D$ and Q bisects the chord $C D$.
$\therefore \mathrm{AP}=\mathrm{BP}=8 \mathrm{~cm}$ and $\mathrm{CQ}=\mathrm{DQ}=6 \mathrm{~cm}$
In triangle $\mathrm{AOP}, \mathrm{OA}^{2}=\mathrm{OP}^{2}+\mathrm{AP}^{2}$
$\Rightarrow(10)^{2}=\mathrm{OP}^{2}+(8)^{2}$
$\Rightarrow \mathrm{OP}^{2}=100-64=36$
$\Rightarrow \mathrm{OP}=6 \mathrm{~cm}$
And in right angled triangle COQ,
$\mathrm{OC}^{2}=\mathrm{OQ}^{2}+\mathrm{CQ}^{2}$
$\Rightarrow(10)^{2}=\mathrm{OQ}^{2}+(6)^{2}$
$\Rightarrow \mathrm{OQ}^{2}=100-36=64$
$\Rightarrow O Q=8 \mathrm{~cm}$
Therefore, distance between two chord AB and $\mathrm{CD}=\mathrm{OP}+\mathrm{OQ}=6+8=14 \mathrm{~cm}$
5. b. 14 cm

Explanation:

Here $\angle \mathrm{OPQ}=90^{\circ}$ [Angle between tangent and radius through the point of contact]
$\therefore \mathrm{OQ}^{2}=\mathrm{OP}^{2}+\mathrm{PQ}^{2} \Rightarrow(25)^{2}=\mathrm{OP}^{2}+(24)^{2}$
$\Rightarrow \mathrm{OP}^{2}=625-576 \Rightarrow \mathrm{OP}^{2}=49$
$\Rightarrow \mathrm{OP}^{2}=49 \Rightarrow \mathrm{OP}=7 \mathrm{~cm}$
Therefore, the diameter $=2 \times \mathrm{OP}=2 \times 7=14 \mathrm{~cm}$
6. $\because \angle A C B=50^{\circ}$
$\angle C B A=90^{\circ}$ (Angle in semi-circle)
$\therefore \angle O A B=90^{\circ}-50^{\circ}$
$=40^{\circ}$
$\angle B A T=90^{\circ}-\angle O A B$
$=90^{\circ}-40^{\circ}$
$=50^{\circ}$
7. A line that interests a circle at two points in a circle is called a Secant.
8. $P Q=P R=5 \mathrm{~cm}$ (Length of Tangents from same external point are always equal) and $\mathrm{PQ}=\mathrm{QS}$ (perpendicular from center of the circle to the chord bisects the chord)
$\therefore \mathrm{PS}=2 \mathrm{PQ}$
$=2 \times 5=10 \mathrm{~cm}$
9. $A F=A E=7 \mathrm{~cm}$ (tangents from same external point are equal)
$\therefore B F=A B-A F=13-7=6 \mathrm{~cm}$
$B D=B F=6 \mathrm{~cm}$ (tangents from same external point)
$\therefore C D=B C-B D=14-6=8 \mathrm{~cm}$
$C E=C D=8 \mathrm{~cm}$
$\therefore A C=A E+E C$
$=7+8=15 \mathrm{~cm}$.
10. Distance between two parallel tangents $=$ diameter $=P Q$
$\mathrm{PQ}=\mathrm{OP}+\mathrm{OQ}=3+3=6 \mathrm{~cm}$
The total distance between two parallel tangents lines is 6 cm .
11. Length of tangents from same external point are equal.
$\therefore \mathrm{TP}=\mathrm{TQ}$
$A P=A R$
and $B R=B Q$
We have, $T P=T Q$
$\Rightarrow T A+A P=T B+B Q$
$\Rightarrow T A+A R=T B+B R$
Hence proved.
12. $\mathrm{AB}=2 \mathrm{AL}=2 \sqrt{O A^{2}-O L^{2}}$
$=2 \sqrt{13^{2}-5^{2}}$
$=2 \sqrt{169-25}=2 \sqrt{144}$
$=2 \times 12=24 \mathrm{~cm}$
13. $\angle \mathrm{POQ}=110^{\circ}$
$\angle \mathrm{OPT}=90^{\circ}$ [Angle between tangent and radius through the point of contact]
$\angle \mathrm{OQT}=90^{\circ}$ [Angle between tangent and radius through the point of contact]
In quadrilateral OPTQ,
$\angle \mathrm{POQ}+\angle \mathrm{OQT}+\angle \mathrm{PTQ}=360^{\circ}$
\because The sum of all the angles of a quadrilateral is 360°.

$$
\begin{aligned}
& \Rightarrow 110^{\circ}+90^{\circ}+90^{\circ}+\angle \mathrm{PTQ}=360^{\circ} \\
& \Rightarrow 290^{\circ}+\angle \mathrm{PTQ}=360^{\circ} \\
& \Rightarrow \angle \mathrm{PTQ}=360^{\circ}-290^{\circ}=70^{\circ} \\
& \Rightarrow \text { Hence, the } \angle \mathrm{PTQ} \text { is } 70^{\circ} .
\end{aligned}
$$

14. We have,

$\mathrm{AC}=\mathrm{CE}, \mathrm{BD}=\mathrm{DE}$
And, $\mathrm{AP}=\mathrm{BP}=14 \mathrm{~cm}$
\therefore Perimeter of $\triangle \mathrm{PCD}=\mathrm{PC}+\mathrm{CD}+\mathrm{PD}$
\Rightarrow Perimeter of $\triangle \mathrm{PCD}=\mathrm{PC}+(\mathrm{CE}+\mathrm{ED})+\mathrm{PD}$
$=(\mathrm{PC}+\mathrm{CE})+(\mathrm{ED}+\mathrm{PD})$
$=(\mathrm{PC}+\mathrm{AC})+(\mathrm{BD}+\mathrm{PD})$
$=P A+P B$
$=14+14$
$=28$
\therefore Perimeter of $\triangle \mathrm{PCD}=28 \mathrm{~cm}$.
15. Given,

$O A \perp P A$ and
$O B \perp P B$
$\therefore \angle \mathrm{OAP}=90^{\circ}$ and $\angle \mathrm{OBP}=90^{\circ}$
$\Rightarrow \angle \mathrm{OAP}+\angle \mathrm{OBP}=180^{\circ}$
PBOA is cyclic quadrilateral
$\therefore \angle A P B+\angle A O B=180^{\circ}$
$\Rightarrow \angle A O B=180^{\circ}-75^{\circ}=105^{\circ}$
Now $\angle A O B=2 \angle A Q B$
$\therefore \angle \mathrm{AQB}=\frac{1}{2}\left(105^{\circ}\right)=52.5^{\circ}$
Now $\angle A M B+\angle A Q B=180^{\circ}$
$\Rightarrow \angle A M B=180^{\circ}-52.5^{\circ}=127.5^{\circ}$
16.

Given: l and m are the tangent to a circle such that $l|\mid m$, intersecting at A and B respectively.
To prove: $A B$ is a diameter of the circle.
Proof:
A tangent at any point of a circle is perpendicular to the radius through the point of contact.
$\therefore \angle X A O=90^{\circ}$
and $\angle Y B O=90^{\circ}$

Since $\angle X A O+\angle Y B O=180^{\circ}$
An angle on the same side of the transversal is 180°.
Hence the line AB passes through the centre and is the diameter of the circle.
17. According to the question, we are given that tangent at a point C of a circle and a diameter AB when extended intersect at P . If $\angle \mathrm{PCA}=110^{\circ}$, find $\angle \mathrm{CBA}$.

OC and CP are radius and tangent respectively at contact point C .

$$
\text { So, } \angle \mathrm{OCP}=90^{\circ}
$$

$$
\angle \mathrm{OCA}=\angle \mathrm{ACP}-\angle \mathrm{OCP}
$$

$$
\Rightarrow \angle \mathrm{OCA}=110^{\circ}-90^{\circ}
$$

$$
\Rightarrow \angle \mathrm{OCA}=20^{\circ}
$$

In $\triangle \mathrm{OAC}$,
$\mathrm{OA}=\mathrm{OC}$ [Radii of same circle]
Therefore, $\angle \mathrm{OCA}=\angle \mathrm{A}=20^{\circ}$ [Since, Angles opposite to equal sides are equal]
CP and CB are tangent and chord of a circle.
Therefore, $\angle \mathrm{CBP}=\angle \mathrm{A}$ [Angles in alternate segments are equal]
In $\triangle C A P$,
$\angle \mathrm{P}+\angle \mathrm{A}+\angle \mathrm{ACP}=180^{\circ}$ [Angled sum property of a triangle]
$\Rightarrow \angle \mathrm{P}+20^{\circ}+110^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{P}=180^{\circ}-130^{\circ}$
$\Rightarrow \angle \mathrm{P}=50^{\circ}$
In $\triangle \mathrm{BPC}$,
Exterior angle $\angle \mathrm{CBA}=\angle \mathrm{P}+\angle \mathrm{BCP}$
$\Rightarrow \angle \mathrm{CBP}=50^{\circ}+20^{\circ}$
$\Rightarrow \angle \mathrm{CBP}=70^{\circ}$
18. Given, the sides $A B, B C$ and $C A$ of triangle $A B C$ touch a circle with centre O and radius
r at P, Q and R respectively.

(i) $\mathrm{AP}=\mathrm{AR}$ [Tangents from A$] \ldots$ (i)

Similarly, BP = BQ ...(ii)
$C R=C Q . . .(i i i)$
Now,
$\because A P=A R$
$\Rightarrow(\mathrm{AB}-\mathrm{BP})=(\mathrm{AC}-\mathrm{CR})$
$\Rightarrow \mathrm{AB}+\mathrm{CR}=\mathrm{AC}+\mathrm{BP}$
$\Rightarrow A B+C Q=A C+B Q$ [Using eq. (ii) and (iii)]
(ii) Let $\mathrm{AB}=\mathrm{x}, \mathrm{BC}=\mathrm{y}, \mathrm{AC}=\mathrm{z}$
\therefore Perimeter of $\triangle \mathrm{ABC}=\mathrm{x}+\mathrm{y}+\mathrm{z}$...(iv)
Area of $\triangle \mathrm{ABC}=\frac{1}{2}$ [area of $\triangle \mathrm{AOB}+$ area of $\triangle \mathrm{BOC}+$ area of $\left.\triangle \mathrm{AOC}\right]$
\Rightarrow Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{OP}+\frac{1}{2} \times \mathrm{BC} \times \mathrm{OQ}+\frac{1}{2} \times \mathrm{AC} \times \mathrm{OR}$
\Rightarrow Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times x \times r+\frac{1}{2} \times y \times r+\frac{1}{2} \times z \times r$
\Rightarrow Area of $\triangle \mathrm{ABC}=\frac{1}{2}(x+y+z) \times \mathrm{r}$
\Rightarrow Area of $\triangle \mathrm{ABC}=\frac{1}{2}$ (Perimeter of $\left.\triangle \mathrm{ABC}\right) \times \mathrm{r}$
19.

Join OA, OB and OP.
$\angle O A P=90^{\circ}$ as the tangent makes a right angle with the radius of the circle at the point of contact.
In \triangle OAP, we have,
$\mathrm{OP}^{2}=\mathrm{OA}^{2}+\mathrm{AP}^{2}$
$\Rightarrow \mathrm{OP}^{2}=5^{2}+12^{2}$
$\Rightarrow \mathrm{OP}=13 \mathrm{~cm}$
$\angle O B P=90^{\circ}$ as the tangent makes a right angle with the radius of the circle at the point of contact.
In \triangle OBP, we have,
$\mathrm{OP}^{2}=\mathrm{OB}^{2}+\mathrm{BP}^{2}$
$\Rightarrow 13^{2}=3^{2}+\mathrm{Bp}^{2}$
$\Rightarrow \mathrm{BP}^{2}=169-9=160$
$\Rightarrow \mathrm{BP}=\sqrt{160} \mathrm{~cm}=4 \sqrt{10} \mathrm{~cm}$
20.

In Δ 's OAB and OAC, we have,
$\angle O B A=\angle O C A=90^{\circ}$
$\mathrm{OA}=\mathrm{OA}$ [Common]
$\mathrm{AB}=\mathrm{AC}[\because$ Tangents from an external point are equal in length $]$
Therefore, by RHS congruence criterion, we have,
$\triangle O B A \cong \triangle O C A$
$\Rightarrow \angle O A B=\angle O A C$ [By c.p.c.t.]
$\therefore \angle O A B=\angle O A C=\frac{1}{2} \angle B A C$
$=\frac{1}{2} \times 120^{\circ}=60^{\circ}$
$\Rightarrow \angle O A B=\angle O A C=60^{\circ}$
In \triangle OBA, we have,
$\cos \mathrm{B}=\frac{A B}{O A}$
$\Rightarrow \cos 60^{\circ}=\frac{A B}{O A}$
$\Rightarrow \frac{1}{2}=\frac{A B}{O A}$
$\Rightarrow \mathrm{OA}=2 \mathrm{AB}$
Hence proved.

