CBSE Test Paper 01

Chapter 10 Circles

1. The perimeter of $\triangle P Q R$ in the given figure is (1)

a. 15 cm
b. 60 cm
c. 45 cm
d. 30 cm .
2. If $P Q=28 \mathrm{~cm}$, then the perimeter of $\triangle P L M$ is (1)

a. 48 cm
b. 56 cm
c. 42 cm
d. 28 cm
3. In the given figure if $\mathrm{QP}=4.5 \mathrm{~cm}$, then the measure of QR is equal to (1)

a. 15 cm
b. 9 cm
c. 18 cm
d. 13.5 cm
4. In the given figure, if $\mathrm{AQ}=4 \mathrm{~cm}, \mathrm{QR}=7 \mathrm{~cm}, \mathrm{DS}=3 \mathrm{~cm}$, then x is equal to (1)

a. 6 cm
b. 10 cm
c. 11 cm
d. 8 cm
5. If $P Q R$ is a tangent to a circle at Q whose centre is $O, A B$ is a chord parallel to $P R$ and $\angle B Q R=60^{\circ}$, then $\angle \mathrm{AQB}$ is equal to (1)

a. 60°
b. 30°
c. 90°
d. 45°
6. How many common tangents can be drawn to two circles touching internally? (1)
7. How many tangents can a circle have? (1)
8. A quadrilateral ABCD is drawn to circumscribe a circle. If $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{BC}=15 \mathrm{~cm}$ and $C D=14 \mathrm{~cm}$, find AD . (1)
9. How many tangents, parallel to a secant can a circle have? (1)
10. In figure, PA and PB are two tangents drawn from an external point P to a circle with centre C and radius 4 cm . If $\mathrm{PA} \perp \mathrm{PB}$, find the length of each tangent. (1)

11. In the given figure, line $B O A$ is a diameter of a circle and the tangent at a point P meets BA when produced at T. If $\angle \mathrm{PBO}=30^{\circ}$ what is the measure of PTA? (2)

12. Two concentric circles are of radii 7 cm and rcm respectively where $\mathrm{r}>7$. A chord of the larger circle of the length 48 cm , touches the smaller circle. Find the value of r. (2)
13. In the adjoining figure, a right angled $\triangle A B C$, circumscribes a circle of radius r. If $A B$ and $B C$ are of lengths 8 cm and 6 cm respectively, then find the value of r. (2)

14. PQR is a right angled triangle right angled at $\mathrm{Q} . \mathrm{PQ}=5 \mathrm{~cm}, \mathrm{QR}=12 \mathrm{~cm}$. A circle with centre O is inscribed in $\triangle P Q R$, touching its all sides. Find the radius of the circle. (3)
15. ABC is a right-angled triangle, right angled at A. A circle is inscribed in it. The lengths of two sides containing the right angle are 24 cm and 10 cm . Find the radius of the incircle. (3)
16. Two concentric circles are of radii 5 cm and 3 cm , find the length of the chord of the larger circle which touches the smaller circle. (3)
17. The common tangents AB and CD to two circles with centres O and O^{\prime} intersect at E between their centres. Prove that the points O, E and O' are collinear. (3)
18. In fig O is the centre of the circle and BCD is tangent to it at C . Prove that $\angle B A C+\angle A C D=90^{\circ}$. (4)

19. If a, b, c are the sides of a right triangle where c is the hypotenuse, prove that at the radius r of the circle which touches the sides of the triangle is given by $r=\frac{a+b-c}{2}$ (4)
20. In figure, PA and PB are two tangents drawn from an external point P to a circle with centre O. Prove that OP is the right bisector of line segment AB. (4)

CBSE Test Paper 01
 Chapter 10 Circles

Solution

1. d. 30 cm .

Explanation Since Tangents from an external point to a circle are equal.
$\therefore \mathrm{PA}=\mathrm{PB}=4 \mathrm{~cm}$,
$\mathrm{BR}=\mathrm{CR}=5 \mathrm{~cm}$
$\mathrm{CQ}=\mathrm{AQ}=6 \mathrm{~cm}$
Perimeter of $\triangle P Q R=P Q+Q R+R P$
$=P A+A Q+Q C+C R+B R+P B$
$=4+6+6+5+5+4=30 \mathrm{~cm}$
2. b. 56 cm

Explanation: We know that, $\mathrm{PQ}=\frac{1}{2}$ (Perimeter of $\triangle \mathrm{PLM}$)
$\Rightarrow 28=\frac{1}{2}$ (Perimeter of $\triangle \mathrm{PLM}$)
$\Rightarrow($ Perimeter of $\triangle \mathrm{PLM})=28 \times 2=56 \mathrm{~cm}$
3. b. 9 cm

Explanation: Here QP = PT = 4.5 cm [Tangents to a circle from an external point $\mathrm{P}]$
Also $\mathrm{PT}=\mathrm{PR}=4.5 \mathrm{~cm}$ [Tangents to a circle from an external point P]
$\therefore \mathrm{QR}=\mathrm{QP}+\mathrm{PQ}=4.5+4.5=9 \mathrm{~cm}$
4. a. 6 cm

Explanation: Here $\mathrm{AQ}=4 \mathrm{~cm}$
$\therefore \mathrm{QB}=\mathrm{AQ}=4 \mathrm{~cm}$ [Tangents from an external point]
$\therefore B R=7-4=3 \mathrm{~cm}$
$\therefore \mathrm{BR}=\mathrm{CR}=3 \mathrm{~cm}$ [Tangents from an external point]
Also SD = SC $=3 \mathrm{~cm}$ [Tangents from an external point]
Therefore, $x=C S+C R=3+3=6$ units
5. a. 60°

Explanation: Since $\mathrm{AB} \| \mathrm{PR}$ and BQ is intersecting them.
$\therefore \angle \mathrm{BQR}=\angle \mathrm{QBA}=60^{\circ}$ [Alternate angles]
And $\angle \mathrm{BQR}=\angle \mathrm{QAB}=60^{\circ}$ [Alternate segment theorem]
Now, in triangle AQB,

$$
\begin{aligned}
& \angle \mathrm{AQB}+\angle \mathrm{QBA}+\angle \mathrm{BAQ}=180^{\circ} \\
& \Rightarrow \angle \mathrm{AQB}+60^{\circ}+60^{\circ}=180^{\circ} \\
& \Rightarrow \angle \mathrm{AQB}=60
\end{aligned}
$$

6. One common tangent can be drawn to two circles touching internally

Figure:

7. A circle can have infinitely many tangents since there are infinitely many points on the circumference of the circle and at each point of it, it has a unique tangent.
8.

Now,
$A B+C D=B C+A D$
$\Rightarrow 12+14=15+\mathrm{AD}$
$\Rightarrow A D=11 \mathrm{~cm}$
9. A circle can have 2 tangents parallel to a secant.

Diagram:

10. PA and PB are two tangents drawn from an external point P to a circle.

$\mathrm{CA} \perp \mathrm{AP}$
$\mathrm{CB} \perp \mathrm{BP}$
$\mathrm{PA} \perp \mathrm{PB}$
$\therefore \mathrm{BPAC}$ is a square.
$\Rightarrow A P=P B=B C=4 \mathrm{~cm}$
11. $\angle A O P=2 \angle A B P$ (Angle subtended by an arc is twice angle subtended by same arc at any other point on the circle)
$\Rightarrow \angle A O P=2 \times 30=60^{\circ}$
$\angle O P T=90^{\circ}$ (Radius and Tangent are perpendicular to each other)
In $\triangle O T P$
$90^{\circ}+60^{\circ}+\angle T=180^{\circ}(\mathrm{ASP})$
$\Rightarrow \angle A T P=30^{\circ}$
12.

Let us take $\mathrm{r}=\mathrm{x}$
Now using Pythagoras theorem
$(x)^{2}=24^{2}+7^{2}$
$(x)^{2}=576+49$
$(\mathrm{x})^{2}=625$
Therefore, $\mathrm{x}=25 \mathrm{~cm}$.
$\mathrm{r}=25 \mathrm{~cm}$.
13. Let D, E and F are points where the in-circle touches the sides AB, BC and CA respectively. Join OA, OB and OC.

In $\triangle A B C, A C^{2}=A B^{2}+B C^{2}$ [By Pythagoras theorem]
$=8^{2}+6^{2}$
$=64+36$
$=100$
$\therefore A C=\sqrt{100}=10 \mathrm{~cm}$ [taking positive square root, as length cannot be negative]
Now, $\operatorname{ar}(\triangle O A B)=\frac{1}{2} \times O D \times A B=\frac{1}{2} \times r \times 8=\frac{8 r}{2}=4 r \mathrm{~cm}^{2}$
$\operatorname{ar}(\triangle O B C)=\frac{1}{2} \times O E \times B C=\frac{1}{2} \times r \times 6=\frac{6 r}{2}=3 \mathrm{rcm}^{2}$
and $\operatorname{ar}(\triangle O A C)=\frac{1}{2} \times O F \times A C=\frac{1}{2} \times r \times 10=\frac{10 r}{2}=5 r \mathrm{~cm}^{2}$
$\therefore \operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle O A B)+\operatorname{ar}(\triangle O B C)+\operatorname{ar}(\triangle O A C)$
$\Rightarrow \frac{1}{2} \times A B \times B C=4 r+3 r+5 r=12 r$
$\Rightarrow \frac{1}{2} \times 8 \times 6=12 r$
$\Rightarrow 24=12 r$
$\Rightarrow r=\frac{24}{12}$
$\Rightarrow r=2 \mathrm{~cm}$
The value of r is 2 cm .
14.

Let QS = x; SR = $12-\mathrm{x}$
$\therefore \mathrm{PT}=5-\mathrm{x}, \mathrm{PM}=\mathrm{PT}$
$\therefore \mathrm{PM}=5-\mathrm{x}$
Also $\mathrm{SR}=\mathrm{MR} \Rightarrow \mathrm{MR}=12-\mathrm{x}$
Also $\mathrm{PQ}^{2}+\mathrm{QR}^{2}=\mathrm{PR}^{2}$
$\Rightarrow \mathrm{PR}=13 \Rightarrow \mathrm{PM}+\mathrm{MR}=13$
$\Rightarrow 5-x+12-x=13 \Rightarrow 2 \mathrm{x}=4 \Rightarrow \mathrm{x}=2$
Also OSQT is a square
$O S=Q S$
$\Rightarrow O S=2 \mathrm{~cm}$
15. Given,

$A B=24 \mathrm{~cm}, A C=10 \mathrm{~cm}$
In right-angled $\triangle \mathrm{ABC}$
$\mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}$
$=24^{2}+10^{2}$
$=676$
$\Rightarrow \mathrm{BC}=26 \mathrm{~cm}$
Let r be the radius of the incircle
$\Rightarrow \mathrm{OP} \perp \mathrm{AB}, \mathrm{OQ} \perp \mathrm{AC}$ and $\mathrm{OR} \perp \mathrm{BC}$
$\mathrm{OP}=\mathrm{OQ}=\mathrm{OR}$ [Incentre of a triangle is equidistant from its sides]
$\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{AOB})+\operatorname{ar}(\triangle \mathrm{BOC})+\operatorname{ar}(\triangle \mathrm{AOC})$
$\frac{1}{2} \mathrm{AB} \times \mathrm{AC}=\frac{1}{2} \mathrm{AB} \times \mathrm{OP}+\frac{1}{2} \mathrm{AC} \times \mathrm{OQ}+\frac{1}{2} \times \mathrm{BC} \times \mathrm{OR}$
$\frac{1}{2} \times 24 \times 10=\frac{1}{2}[24 \times r+10 \times r+26 \times r]$
$\Rightarrow 120=r[24+10+26]$
$\Rightarrow 120=\mathrm{r}[24+10+26]$

$$
\Rightarrow 120=30 \mathrm{r} \Rightarrow \mathrm{r}=4 \mathrm{~cm}
$$

16. $\because \mathrm{PQ}$ is the chord of the larger circle which touches the smaller circle at the point L . Since $P Q$ is tangent at the point L to the smaller circle with centre O.

$\therefore \mathrm{OL} \perp \mathrm{PQ}$
$\therefore \mathrm{PQ}$ is a chord of the bigger circle and $\mathrm{OL} \perp \mathrm{PQ}$
\therefore OL bisects PQ
$\therefore \mathrm{PQ}=2 \mathrm{PL}$
In \triangle OPL,
$P L=\sqrt{O P^{2}-O L^{2}}=\sqrt{5^{2}-3^{2}}=\sqrt{25-9}=4$
\therefore Chord $\mathrm{PQ}=2 \mathrm{PL}=8 \mathrm{~cm}$
\therefore Length of chord $\mathrm{PQ}=8 \mathrm{~cm}$
17. Construction: Join OA and OC.

$\angle A E C=\angle D E B \ldots$...(vertically opposite angles)
In $\triangle \mathrm{OAE}$ and $\triangle \mathrm{OCE}$,
$\mathrm{OA}=\mathrm{OC} \ldots$...(Radii of the same circle)
OE = OE ...(Common side)
$\angle O A E=\angle O C E$....(each is 90°)
$\Rightarrow \triangle O A E \cong \triangle O C E$....(RHS congruence criterion)
$\Rightarrow \angle A E O=\angle C E O$....(cpct)
Similarly, for the circle with centre O',
$\angle D E O^{\prime}=\angle B E O^{\prime}$
Now, $\angle A E C=\angle D E B$
$\Rightarrow \frac{1}{2} \angle A E C=\frac{1}{2} \angle D E B$
$\Rightarrow \angle A E O=\angle C E O=\angle D E O^{\prime}=\angle B E O^{\prime}$
Hence, all the fours angles are equal and bisected by OE and O'E.
So, O, E and O are collinear.
18.

$\angle O C D=90^{\circ}$ (tangent and radii are \perp to one another at the point of contact)
In \triangle OCA,
$\mathrm{OC}=\mathrm{OA}$ (radii of circle)
Hence, $\angle O C A=\angle O A C$ (angles opposite to equal sides are equal)
Also, $\angle O C D=\angle O C A+\angle A C D$
$90^{\circ}=\angle O A C+\angle A C D(\because \angle O C A=\angle O A C)$
$90^{\circ}=\angle B A C+\angle A C D$
Hence, $\angle B A C+\angle A C D=90^{\circ}$
Hence proved.
19.

The circle touches the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ of the right triangle ABC at D, E and F respectively. Let $\mathrm{BC}=\mathrm{a}, \mathrm{CA}=\mathrm{b}$ and $\mathrm{AB}=\mathrm{c}$
Now, $\mathrm{AF}=\mathrm{AE}$ and $\mathrm{BD}=\mathrm{BF}$
$\Rightarrow \mathrm{AF}=\mathrm{AE}=\mathrm{AC}-\mathrm{CE}$ and $\mathrm{BF}=\mathrm{BD}=\mathrm{BC}-\mathrm{CD}$
$\Rightarrow \mathrm{AF}=\mathrm{b}-\mathrm{r}$ and $\mathrm{BF}=\mathrm{a}-\mathrm{r}(\because$ OEDC is a square $)$
$\Rightarrow \mathrm{AF}+\mathrm{BF}=(\mathrm{b}-\mathrm{r})+(\mathrm{a}-\mathrm{r})$
$\Rightarrow \mathrm{AB}=\mathrm{a}+\mathrm{b}-2 \mathrm{r}$
$\Rightarrow \mathrm{c}=\mathrm{a}+\mathrm{b}-2 \mathrm{r}$
$\Rightarrow \mathrm{r}=\frac{a+b-c}{2}$
20. Given, PA and PB are two tangents.

Construction: Join $O A$ and $O B$.
In $\triangle \mathrm{PAO}$ and $\triangle P B O, O A=O B$ [Radii]
$O P=O P$ [Common]
and $A P=B P$ [Tangents from P]
$\therefore \triangle \mathrm{PAO}=\triangle \mathrm{PBO}$ (SSS)
$\Rightarrow \angle 1=\angle 2$
In $\triangle \mathrm{APC}$ and $\triangle \mathrm{BPC}, \angle 1=\angle 2$ [Proved]
$A P=B P$ and $P C=P C$,
$\triangle \mathrm{APC} \cong \triangle \mathrm{BPC}$ [SAS]
$\mathrm{AC}=\mathrm{BC}$
and $\angle \mathrm{ACP}=\angle \mathrm{BCP}$
Also, $\angle \mathrm{ACP}+\angle \mathrm{BCP}=180^{\circ}$ [by linear pair axiom]
$\angle \mathrm{ACP}+90^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{ACP}=90^{\circ}$
$\therefore \mathrm{OP}$ is right bisector of AB .

