## CBSE Test Paper 02

## Chapter 1 Real Number

1. $\qquad$ is neither prime nor composite. (1)
a. 4
b. 1
c. 2
d. 3
2. All non-terminating and non-recurring decimal numbers are (1)
a. rational numbers
b. irrational numbers
c. integers
d. natural numbers
3. The HCF of two consecutive odd numbers is (1)
a. 2
b. 0
c. 1
d. 3
4. The decimal expansion of ' $\pi$ ': (1)
a. is non-terminating and non-recurring
b. is terminating
c. does not exist
d. is non-terminating and recurring
5. If a is rational and $\sqrt{b}$ is irrational, then $a+\sqrt{b}$ is: (1)
a. an irrational number
b. an integer
c. a natural number
d. a rational number
6. Find the simplest form of $\frac{69}{92}$. (1)
7. State whether the given rational number will have a terminating decimal expansion or a nonterminating repeating decimal expansion. (1)
$\frac{13}{3125}$
8. What can you say about the prime factorisations of the denominators of 43.123456789. (1)
9. Find the LCM and HCF of 24, 15 and 36 by applying the prime factorization method.
(1)
10. For any integer $a$ and 3 , there exists unique integers $q$ and $r$ such that $a=3 q+r$. Find the possible values of r. (1)
11. If $\alpha$ and $\beta$ are zeroes of $\mathrm{x}^{2}-(\mathrm{k}-6) \mathrm{x}+2(2 \mathrm{k}-1)$, find the value of k : if $\alpha+\beta=\frac{1}{2} \alpha \beta$. (2)
12. Find the prime factorization of 1296. (2)
13. Without actual division, show that rational number $\frac{33}{50}$ is a terminating decimal. Express decimal form. (2)
14. Show that one and only one out of $n,(n+2)$ or $(n+4)$ is divisible by 3 , where $n$ EN. (3)
15. Wrtie the HCF and LCM of smallest odd composite number and the smallest odd prime number. If an odd number $p$ divides $q^{2}$, then will it divide $q^{3}$ also? Explain. (3)
16. The HCF and LCM of two polynomials $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$ are $(2 \mathrm{x}-1)$ and $\left(6 x^{3}+25 x^{2}-24 x+5\right)$ respectively. If $P(x)=2 x^{2}+9 x-5$, determine $\mathrm{Q}(\mathrm{x})$. (3)
17. The traffic lights at three different road crossings change after every 48 seconds, 72 seconds and 108 seconds respectively. If they all change simultaneously at 8 a.m. then at what time will they again change simultaneously? (3)
18. Show that the cube of any positive integer is of the form $4 m, 4 m+1$ or $4 m+3$, for some integer m. (4)
19. Find the HCF of 256 and 36 using Euclid's Division Algorithm. Also, find their LCM and verify that HCF $\times$ LCM $=$ Product of the two numbers. (4)
20. Use Euclid's division algorithm, to find the largest number, which divides 957 and 1280 leaving remainder 5 in each case. (4)

## CBSE Test Paper 02

## Chapter 1 Real Number

## Solution

1. b. 1

Explanation: 1 is neither prime nor composite.
A prime is a natural number greater than 1 that has no positive divisors other than 1 and itself
e.g. 5 is prime because 1 and 5 are its only positive integers factors but 6 is composite because it has divisors 2 and 3 in addition to 1 and 6 .
2.
b. irrational numbers

Explanation: All non-terminating and non-recurring decimal numbers are irrational numbers. A number is rational if and only if its decimal representation is repeating or terminating.
3. c. 1

Explanation: The HCF of two consecutive odd numbers is 1.(e.g the HCF of 25, 27 is 1 )
4. a. is non-terminating and non-recurring

Explanation: The decimal expansion of ' $\pi$ 'is non-terminating and nonrecurring.

The value of $\pi=3.141592653589$ $\qquad$
$\therefore$ Value of $\pi$ is not-repeating decimal, non-terminating and non-recurring number.
5. a. an irrational number

Explanation: Let $a$ be rational and $\sqrt{b}$ is irrational.
If possible let $a+\sqrt{b}$ be rational.
Then $a+\sqrt{b}$ is rational and $a$ is rational.
$\Rightarrow[(a+\sqrt{b})-a]$ is rational [Difference of two rationals is rational]
$\Rightarrow \sqrt{b}$ is rational.
This contradicts the fact that $\sqrt{b}$ is irrational.
The contradiction arises by assuming that $a+\sqrt{b}$ is rational.
Therefore, $a+\sqrt{b}$ is irrational.
6. The prime factors of 69 and 92 are:
$69=3 \times 13$
$92=4 \times 23=2^{2} \times 23$
Hence $\frac{69}{92}=\frac{3 \times 23}{2 \times 2 \times 23}=\frac{3}{4}$
7. $\frac{13}{3125}=\frac{13}{5^{5}}$ Here, $q=5^{5}$,
which is of the form $2^{n} 5^{m}(n=0, m=5)$.
So the rational number $\frac{13}{3125}$ has a terminating decimal expansion.
8. $43.12456789=\frac{43123456789}{1000000000}=\frac{43123456789}{10^{9}}$
$=\frac{43123456789}{(2 \times 5)^{9}}=\frac{43123456789}{2^{9} \times 5^{9}}$
Prime factorization of the denominator of 43.123456789 are $2^{9} \times 5^{9}$ and are of the form, $2^{m} \times 5^{n}$
where $\mathrm{m}=9$ and $\mathrm{n}=9$
9. 24,15 and 36

Let us first find the factors of 24,15 and 36
$24=2^{3} \times 3$
$15=3 \times 5$
$36=2 \times 2 \times 3 \times 3$
LCM of 24,15 and $36=2 \times 2 \times 2 \times 3 \times 3 \times 5$
LCM of 24,15 and $36=360$
HCF of 24,15 and $36=3$
10. According to Euclid's division lemma for two positive number $a$ and $b$ there exist integers $q$ and $r$ such that $a=b \times q+r$ where $0 \leq r<b$.

Here b = 3
Therefore, $0 \leq r<3$
So, the possible values of $r$ can be $0,1,2$ because as per Euclid's division lemma $r$ is greater then or equal to zero and smaller then b
11. we are given that $\alpha$ and $\beta$ are zeroes of $x^{2}-(k-6) x+2(2 k-1)$,

Given, $\alpha, \beta$ are the zeroes of polynomial
$\mathrm{x}^{2}-(\mathrm{k}-6) \mathrm{x}+2(2 \mathrm{k}-1)$
$\therefore \alpha+\beta=-[-(\mathrm{k}-6)]=\mathrm{k}-6$
$\alpha \beta=2(2 \mathrm{k}-1)$
$\alpha+\beta=\frac{1}{2} \alpha \beta$
or, $\mathrm{k}+6=\frac{2(2 k-1)}{2}$
or, k - $6=2 \mathrm{k}-1$
or $k=-5$
Hence the value of $\mathrm{k}=-5$.


So, $1296=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3=2^{4} \times 3^{4}$
Hence the prime factors of 1296 are 2, 2, 2, 2, 3, 3, 3, 3 .
13. The given number is $\frac{33}{50}$.

The denominator $50=2 \times 25$
$=2 \times 5^{2}=2^{1} \times 5^{2}$
So the denominator is in the form of $2^{\mathrm{m}} \times 5^{\mathrm{n}}$ where $\mathrm{m}=1$ and $\mathrm{n}=2$.
Hence the given number is a terminating decimal.
Now, $\frac{33}{50}=\frac{33}{\left(2 \times 5^{2}\right)}=\frac{33 \times 2}{\left(2^{2} \times 5^{2}\right)}=\frac{66}{(2 \times 5)^{2}}$
$=\frac{66}{(10)^{2}}=\frac{66}{100}=0.66$.
14. Let the number be ( $3 \mathrm{q}+\mathrm{r}$ )
$n=3 q+r \quad 0 \leq r<3$
or $3 q, 3 q+1,3 q+2$
If $n=3 q$ then, numbers are $3 q,(3 q+1),(3 q+2)$
$3 q$ is divisible by 3.
If $n=3 q+1$ then, numbers are $(3 q+1),(3 q+3),(3 q+4)$
( $3 q+3$ ) is divisible by 3
If $n=3 q+2$ then, numbers are $(3 q+2),(3 q+4),(3 q+6)$
$(3 q+6)$ is divisible by 3 .
$\therefore$ out of $n,(n+2)$ and $(n+4)$ only one is divisible by 3 .
15. Smallest odd composite number $=9$
and smallest odd prime number $=3$
HCF of 9 and $3=3$ and LCM of 9 and $3=9$
Now, if an odd number $p$ divides $q^{2}$, then $p$ is one of the factors of $q^{2}$,
i.e. $q^{2}=p m$, for some integer $m$

Now, $q^{3}=q^{2} \times q$
$\Rightarrow \mathrm{q}^{3}=\mathrm{pm} \times \mathrm{q}$
$\Rightarrow q^{3}=p(m q)[$ from $E q(i)]$
$\Rightarrow p$ is a factor of $q^{3}$ also $\Rightarrow p$ divides $q^{3}$.
16. It is given that $\mathrm{P}(\mathrm{x})=2 \mathrm{x}^{2}+9 \mathrm{x}-5$
$=2 x^{2}+10 x-x-5=(x+5)(2 x-1)$
HCF of $P(x)$ and $Q(x)=(2 x-1)$ and
LCM of $p(x)$ and $Q(x)=6 x^{3}+25 x^{2}-24 x+5$
$=(2 x-1)\left(3 x^{2}+14 x-5\right)$ [Applying factor theorem]
$=(2 x-1)\left(3 x^{2}+15 x-x-5\right)$
$=(2 \mathrm{x}-1)(\mathrm{x}+5)(3 \mathrm{x}-1)$
Now, $\mathrm{P}(\mathrm{x}) \times \mathrm{Q}(\mathrm{x})=[\mathrm{HCF}$ of $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})] \times[\mathrm{LCM}$ of $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})]$
$\Rightarrow(\mathrm{x}+5)(2 \mathrm{x}-1) \Rightarrow \mathrm{Q}(\mathrm{x})=(2 \mathrm{x}-1)(2 \mathrm{x}-1)(\mathrm{x}+5)(3 \mathrm{x}-1)$
$Q(x)=(2 x-1)(3 x-1)=6 x^{2}-5 x+1$
17. We have to find Prime Factors of the following numbers
$48=2^{4} \times 3$
$72=2^{3} \times 3^{2}$
$108=2^{2} \times 3^{3}$
so the LCM of 48, 72 and 108is
$L C M=2^{4} \times 3^{3}$
$L C M=16 \times 27=432$
432 seconds $=\frac{432}{60} \mathrm{mins}$
432 seconds $=7.2 \mathrm{mins}$
So the time it will change together again is
$8 \mathrm{am}+7 \mathrm{mins} 12$ seconds $=8: 07: 12 \mathrm{am}$
18. Let a be an arbitrary positive integer.

Then, by Euclid's division Lemma, corresponding to the positive integers a and 4, there exist non - negative integers $q$ and $r$ such that
$\mathrm{a}=4 \mathrm{q}+\mathrm{r}$, where $0 \leqslant r<4$
$\Rightarrow \mathrm{a}^{3}=(4 \mathrm{q}+\mathrm{r})^{3}=64 \mathrm{q}^{3}+\mathrm{r}^{3}+12 \mathrm{qr}^{2}+48 \mathrm{q}^{2} \mathrm{r}\left[(\mathrm{A}+\mathrm{B})^{3}=\mathrm{A}^{3}+\mathrm{B}^{3}+3 \mathrm{AB}^{2}+3 \mathrm{~A}^{2} \mathrm{~B}\right]$
$\Rightarrow \mathrm{a}^{3}=64 \mathrm{q}^{3}+48 \mathrm{q}^{2} \mathrm{r}+12 \mathrm{qr}^{2}+\mathrm{r}^{3}$ where $0 \leqslant r<4$
The possible values of r are $0,1,2,3$.
Case I: If $\mathrm{r}=0$ then from Eq.(i) we get
$a^{3}=64 q^{3}+48 q^{2}(0)+12 q(0)^{2}+(0)^{3}$
$a^{3}=64 q^{3}=4\left(16 q^{3}\right)$
$\Rightarrow a^{3}=4 m$
where, $m=16 q^{3}$ is an integer.
Case II: If $r=1$, then from Eq.(i), we get
$\mathrm{a}^{3}=64 \mathrm{q}^{3}+48 \mathrm{q}^{2} \mathrm{r}+12 \mathrm{q}+1$
$a^{3}=64 q^{3}+48 q^{2}(1)+12 q(1)^{2}+(1)^{3}$
$=4\left(16 q^{3}+12 q^{2}+3 q\right)+1=4 m+1$
where, $m=\left(16 q^{3}+12 q^{2}+3 q\right)$ is an integer.
Case III: If $r=2$, then from Eq.(i), we get
$a^{3}=64 q^{3}+48 q^{2}(2)+12 q(2)^{2}+(2)^{3}$
$\mathrm{a}^{3}=64 \mathrm{q}^{3}+96 \mathrm{q}^{2}+48 \mathrm{q}+8$
$=4\left(16 q^{3}+24 q^{2}+12 q+2\right)=4 m$
where, $m=\left(16 q^{3}+24 q^{2}+12 q+2\right)$ is an integer.
Case IV: If $r=3$, then from Eq.(i), we get
$a^{3}=64 q^{3}+48 q^{2}(3)+12 q(3)^{2}+(3)^{3}$
$a^{3}=64 q^{3}+144 q^{2}+108 q+27$
$=64 q^{3}+144 q^{2}+108 q+24+3$
$=4\left(16 q^{3}+36 q^{2}+27 q+6\right)+3=4 m+3$
where, $m=\left(16 q^{3}+36 q^{2}+27 q+6\right)$ is an integer.
Hence, the cube for any positive integer is of the form $4 \mathrm{~m}, 4 \mathrm{~m}+104 \mathrm{~m}+3$ for some integer m .
19. Since $256>36$, we apply the division lemma to 256 and 36 , to get
$256=36 \times 7+4$
Again on applying the division lemma to 36 and 4, to get
$36=4 \times 9+0$
Hence, the HCF of 256 and 36 is 4
$256=16 \times 16=2^{4} \times 2^{4}=2^{8}$
$36=4 \times 9=2^{2} \times 3^{2}$
So LCM $(36,256)=2^{8} \times 3^{2}=256 \times 9=2304$
HCF $\times$ LCM $=4 \times 2304=9216$
and $36 \times 256=9216$
So HCF $\times \mathrm{LCM}=36 \times 256$
Hence HCF $\times$ LCM $=$ Product of two numbers
20. Given numbers are 957 and 1280 and remainder is 5 in each case.Then , new numbers after subtracting remainders are
$957-5=952$ and $1280-5=1275$
Now, by using Euclid's Division lemma , we get
$1275=(952 \times 1)+323$
Here remainder $=323$
So, on taking 952 as dividend and 323 as new divisor and then apply Euclid's Division
lemma, we get
$952=(323 \times 2)+306$
Again, remainder $=306$.
So, on taking 323 as dividend and 306 as new divisor and then apply Euclid's Division lemma, we get
$323=(306 \times 1)+17$
Again, remainder $=17$.
So, on taking 306 as dividend and 17 as new divisor and then apply Euclid's Division lemma, we get
$306=(17 \times 18)+0$
Here, remainder $=0$.
Since, remainder has now become zero and the last divisor is 17 .
Therefore, HCF of 952 and 1275 is 17.

