CBSE Test Paper 02 Chapter 1 Real Number

- 1. _____ is neither prime nor composite. (1)
 - a. 4
 - b. 1
 - c. 2
 - d. 3
- 2. All non-terminating and non-recurring decimal numbers are (1)
 - a. rational numbers
 - b. irrational numbers
 - c. integers
 - d. natural numbers
- 3. The HCF of two consecutive odd numbers is (1)
 - a. 2
 - b. 0
 - c. 1
 - d. 3
- 4. The decimal expansion of ' π ': (1)
 - a. is non-terminating and non-recurring
 - b. is terminating
 - c. does not exist
 - d. is non-terminating and recurring
- 5. If a is rational and \sqrt{b} is irrational, then $a+\sqrt{b}$ is: (1)
 - a. an irrational number
 - b. an integer
 - c. a natural number
 - d. a rational number
- 6. Find the simplest form of $\frac{69}{92}$. (1)
- 7. State whether the given rational number will have a terminating decimal expansion or a nonterminating repeating decimal expansion. **(1)**

 $\frac{13}{3125}$

- What can you say about the prime factorisations of the denominators of 43.123456789. (1)
- 9. Find the LCM and HCF of 24, 15 and 36 by applying the prime factorization method.(1)
- For any integer a and 3, there exists unique integers q and r such that a = 3q + r. Find the possible values of r. (1)
- 11. If α and β are zeroes of x²- (k 6)x + 2(2k 1), find the value of k: if $\alpha + \beta = \frac{1}{2}\alpha\beta$. (2)
- 12. Find the prime factorization of 1296. (2)
- 13. Without actual division, show that rational number $\frac{33}{50}$ is a terminating decimal. Express decimal form. (2)
- 14. Show that one and only one out of n, (n + 2) or (n + 4) is divisible by 3, where n EN. (3)
- Wrtie the HCF and LCM of smallest odd composite number and the smallest odd prime number. If an odd number p divides q², then will it divide q³ also? Explain. (3)
- 16. The HCF and LCM of two polynomials P(x) and Q(x) are (2x–1) and $(6x^3+25x^2-24x+5)$ respectively. If $P(x)=2x^2+9x-5$, determine Q(x). (3)
- 17. The traffic lights at three different road crossings change after every 48 seconds, 72 seconds and 108 seconds respectively. If they all change simultaneously at 8 a.m. then at what time will they again change simultaneously? **(3)**
- 18. Show that the cube of any positive integer is of the form 4m, 4m+1 or 4m+3, for some integer m. (4)
- 19. Find the HCF of 256 and 36 using Euclid's Division Algorithm. Also, find their LCM and verify that HCF \times LCM = Product of the two numbers. **(4)**
- 20. Use Euclid's division algorithm, to find the largest number, which divides 957 and 1280 leaving remainder 5 in each case. **(4)**

CBSE Test Paper 02 Chapter 1 Real Number

Solution

1.	b.	1
		Explanation: 1 is neither prime nor composite.
		A prime is a natural number greater than 1 that has no positive divisors other
		than 1 and itself
		e.g. 5 is prime because 1 and 5 are its only positive integers factors but 6 is
		composite because it has divisors 2 and 3 in addition to 1 and 6.
2.	b.	irrational numbers
		Explanation: All non-terminating and non-recurring decimal numbers are
		irrational numbers. A number is rational if and only if its decimal
		representation is repeating or terminating.
3.	C.	1
		Explanation: The HCF of two consecutive odd numbers is 1.(e.g the HCF of 25,
		27 is 1)
4.	a.	is non-terminating and non-recurring
		Explanation: The decimal expansion of ' π 'is non-terminating and non-
		recurring.
		The value of π = 3.141592653589
		\therefore Value of π is not-repeating decimal, non-terminating and non-recurring
		number.
5.	a.	an irrational number
		Explanation: Let a be rational and \sqrt{b} is irrational.
		If possible let $a+\sqrt{b}$ be rational.
		Then $a+\sqrt{b}$ is rational and a is rational.
		$\Rightarrow \left[\left(a + \sqrt{b} ight) - a ight]$ is rational [Difference of two rationals is rational]
		$\Rightarrow \sqrt{b}$ is rational.
		This contradicts the fact that \sqrt{b} is irrational.
		The contradiction arises by assuming that $a+\sqrt{b}$ is rational.

Therefore, $a+\sqrt{b}$ is irrational.

6. The prime factors of 69 and 92 are:

$$69=3 imes 13 \ 92=4 imes 23=2^2 imes 23 \ Hence \ rac{69}{92}=rac{3 imes 23}{2 imes 2 imes 23}=rac{3}{4}$$

7. $\frac{13}{3125} = \frac{13}{5^5}$ Here, q = 5⁵,

which is of the form $2^{n}5^{m}$ (n = 0, m = 5). So the rational number $\frac{13}{3125}$ has a terminating decimal expansion.

8. $43.12456789 = \frac{43123456789}{1000000000} = \frac{43123456789}{10^9} = \frac{43123456789}{10^9} = \frac{43123456789}{2^9 \times 5^9}$

Prime factorization of the denominator of 43.123456789 are $2^9 imes 5^9$

and are of the form, $2^m imes 5^n$

- where m=9 and n=9
- 9. 24, 15 and 36

Let us first find the factors of 24, 15 and 36

 $24 = 2^3 \times 3$

15 = 3 × 5

 $36 = 2 \times 2 \times 3 \times 3$

LCM of 24, 15 and 36 = $2 \times 2 \times 2 \times 3 \times 3 \times 5$ LCM of 24, 15 and 36 = 360 HCF of 24, 15 and 36 = 3

10. According to Euclid's division lemma for two positive number a and b there exist integers q and r such that a = $b \times q + r$ where $0 \le r < b$. Here b = 3

Therefore, $0 \leq r < 3$

So, the possible values of r can be 0, 1, 2 because as per Euclid's division lemma r is greater then or equal to zero and smaller then b

11. we are given that α and β are zeroes of x²- (k - 6)x + 2(2k - 1), Given, α , β are the zeroes of polynomial

$$x^{2} - (k - 6)x + 2(2k - 1)$$

$$\therefore \quad \alpha + \beta = -[-(k - 6)] = k - 6$$

$$\alpha\beta = 2(2k - 1)$$

$$\alpha + \beta = \frac{1}{2}\alpha\beta$$

or, k + 6 = $\frac{2(2k - 1)}{2}$
or, k - 6 = 2k - 1
or k = -5

Hence the value of k = -5.

So, 1296 = 2 × 2 × 2 × 2 × 3 × 3 × 3 × 3 = $2^4 \times 3^4$ Hence the prime factors of 1296 are 2, 2, 2, 2, 3, 3, 3, 3.

13. The given number is $\frac{33}{50}$. The denominator 50 = 2 × 25

$$= 2 \times 5^2 = 2^1 \times 5^2$$

So the denominator is in the form of $2^m \times 5^n\,$ where m = 1 and n = 2.

Hence the given number is a terminating decimal.

Now,
$$\frac{33}{50} = \frac{33}{(2 \times 5^2)} = \frac{33 \times 2}{(2^2 \times 5^2)} = \frac{66}{(2 \times 5)^2}$$

= $\frac{66}{(10)^2} = \frac{66}{100} = 0.66.$

- 14. Let the number be (3q + r)
 - n = 3q + r $0 \le r < 3$ or 3q, 3q + 1, 3q + 2If n = 3 q then, numbers are 3 q, (3q + 1), (3q + 2)3q is divisible by 3. If n = 3q + 1 then, numbers are (3q + 1), (3q + 3), (3q + 4)(3q + 3) is divisible by 3 If n = 3q + 2 then, numbers are (3q + 2), (3q + 4), (3q + 6)(3q + 6) is divisible by 3. \therefore out of n, (n + 2) and (n + 4) only one is divisible by 3.
- 15. Smallest odd composite number = 9 and smallest odd prime number = 3 HCF of 9 and 3 = 3 and LCM of 9 and 3 = 9 Now, if an odd number p divides q², then p is one of the factors of q², i.e. q² = pm, for some integer m.....(i) Now, q³ = q² × q \Rightarrow q³ = pm × q \Rightarrow q³ = p(mq)[from Eq(i)] \Rightarrow p is a factor of q³ also \Rightarrow p divides q³.
- 16. It is given that $P(x) = 2x^2 + 9x 5$ $= 2x^2 + 10x - x - 5 = (x + 5)(2x - 1)$ HCF of P(x) and Q(x) = (2x - 1) and LCM of p(x) and Q(x) = 6x³ + 25x² - 24x + 5 $= (2x - 1) (3x^2 + 14x - 5)$ [Applying factor theorem] $= (2x - 1) (3x^2 + 15x - x - 5)$ = (2x - 1) (x + 5) (3x - 1)Now, P(x) × Q(x) = [HCF of P(x) and Q(x)] × [LCM of P(x) and Q(x)] $\Rightarrow (x + 5) (2x - 1) \Rightarrow Q(x) = (2x - 1) (2x - 1) (x + 5) (3x - 1)$ $Q(x) = (2x - 1) (3x - 1) = 6x^2 - 5x + 1$

17. We have to find Prime Factors of the following numbers

 $48 = 2^{4} \times 3$ $72 = 2^{3} \times 3^{2}$ $108 = 2^{2} \times 3^{3}$ so the LCM of 48, 72 and 108 is $LCM = 2^{4} \times 3^{3}$ $LCM = 16 \times 27 = 432$ $432 \text{ seconds} = \frac{432}{60} \text{ mins}$ 432 seconds = 7.2 minsSo the time it will change together again is 8 am + 7 mins 12 seconds = 8 : 07 : 12 am

18. Let a be an arbitrary positive integer.

Then, by Euclid's division Lemma, corresponding to the positive integers a and 4, there exist non - negative integers q and r such that a = 4q+r , where $0\leqslant r<4$ $\Rightarrow a^{3} = (4q+r)^{3} = 64q^{3} + r^{3} + 12 qr^{2} + 48q^{2}r [(A+B)^{3} = A^{3} + B^{3} + 3AB^{2} + 3A^{2}B]$ \Rightarrow a³ = 64 q³ + 48 q²r + 12 qr² + r³ where $0 \le r < 4$ (i) The possible values of r are 0,1,2,3. **Case I:** If r=0 then from Eq.(i) we get $a^3 = 64 q^3 + 48 q^2(0) + 12 q(0)^2 + (0)^3$ $a^3 = 64 q^3 = 4(16 q^3)$ $\Rightarrow a^3 = 4m$ where, $m = 16 q^3$ is an integer. **Case II:** If r = 1, then from Eq.(i), we get $a^3 = 64 q^3 + 48 q^2 r + 12 q + 1$ $a^3 = 64 q^3 + 48 q^2(1) + 12 q(1)^2 + (1)^3$ $= 4(16 q^3 + 12 q^2 + 3 q) + 1 = 4m + 1$ where, m = $(16 q^3 + 12 q^2 + 3 q)$ is an integer. **Case III:** If r = 2, then from Eq.(i), we get $a^3 = 64 q^3 + 48 q^2(2) + 12 q(2)^2 + (2)^3$

$$a^{3} = 64 q^{3} + 96 q^{2} + 48 q + 8$$

= 4(16 q³ + 24 q² + 12 q + 2) = 4m
where, m = (16 q³ + 24 q² + 12 q + 2) is an integer.
Case IV: If r = 3, then from Eq.(i), we get
$$a^{3} = 64 q^{3} + 48 q^{2}(3) + 12 q(3)^{2} + (3)^{3}$$
$$a^{3} = 64 q^{3} + 144 q^{2} + 108 q + 27$$

= 64 q³ + 144 q² + 108 q + 24 + 3
= 4(16 q³ + 36 q² + 27 q + 6) + 3 = 4m + 3
where, m = (16 q³ + 36 q² + 27 q + 6) is an integer.
Hence, the cube for any positive integer is of the form 4m, 4m+ 10 4m +3 for some integer m.

19. Since 256 > 36, we apply the division lemma to 256 and 36, to get

256 = $36 \times 7 + 4$ Again on applying the division lemma to 36 and 4, to get $36 = 4 \times 9 + 0$ Hence, the HCF of 256 and 36 is 4 $256 = 16 \times 16 = 2^4 \times 2^4 = 2^8$ $36 = 4 \times 9 = 2^2 \times 3^2$ So LCM (36,256) = $2^8 \times 3^2 = 256 \times 9 = 2304$ HCF × LCM = $4 \times 2304 = 9216$ and $36 \times 256 = 9216$ So HCF × LCM = 36×256 Hence HCF × LCM = Product of two numbers

20. Given numbers are 957 and 1280 and remainder is 5 in each case. Then , new numbers after subtracting remainders are
957 – 5 = 952 and 1280 – 5 = 1275
Now, by using Euclid's Division lemma , we get
1275 = (952 × 1) + 323
Here remainder = 323
So, on taking 952 as dividend and 323 as new divisor and then apply Euclid's Division

lemma, we get $952 = (323 \times 2) + 306$ Again, remainder = 306. So, on taking 323 as dividend and 306 as new divisor and then apply Euclid's Division lemma, we get $323 = (306 \times 1) + 17$ Again, remainder = 17. So, on taking 306 as dividend and 17 as new divisor and then apply Euclid's Division lemma, we get $306 = (17 \times 18) + 0$ Here, remainder = 0. Since, remainder has now become zero and the last divisor is 17. Therefore, HCF of 952 and 1275 is 17.

Vidya Champ